1.非常规油气勘探开发关键技术

2.埕北古4井区中深层储集层预测及开发对策

3.十大石油科学技术有哪些?

4.国家电网大数据应用 增强企业核心竞争力

5.道琼斯指数是什么?

6.比如 关于个人知识石油专业方面的术语 概括下石油知识什么的 最好是成品 给点硬磕!

7.储集层特殊分析技术在油气勘探中的应用

8.油气评价总体思路及一般程序

石油价格预测模型_石油价格预测精度分析报告

石油工程钻井论文

 随着经济的发展,人们对石油的需求不断增长,为满足人们需求,石油工程技术也呈现出了不断发展的趋势。以下是我搜索整理一篇石油工程钻井论文,欢迎大家阅读!

  摘要: 石油钻井工程技术是石油工程技术中的重要部分,为提升钻井速度,提高钻井质量,黑龙江大庆油田有限公司也加强了对这一技术的研究。本文就石油工程技术钻井技术进行了研究分析。

  关键词: 石油工程技术;钻井技术;研究

 石油的开中,石油工程技术具有重要地位,石油钻井技术则是石油工程技术中的重要部分。为充分满足现阶段人们对石油的需求,石油企业也应加强对石油工程技术中钻井技术的研究,以提升钻井效率和工作质量,以推动我国石油开发与勘探工作的进一步发展。

  1、石油钻井技术相关概述

 近年来,我国石油产业得到了巨大的发展,石油技术方面也取得了显著的成就。尤其是近十年,越来越多的先进技术被引入石油工程[1]。尤其是钻井技术的应用,使我国的油气储备量大大增加,对石油的开也从以往的地面转向了海洋、深层等难度较大的区域,有效提升了我国的'油气产量。而石油工程钻井技术的创新发展,也成为了现阶段石油企业发展的关键。

  2、主要石油钻井技术研究

 2.1石油工程技术水平钻井技术研究

 水平钻井技术是一种定向钻井技术[2]。在实际运用过程中,需要利用井底动力工具、随钻测量仪器等,钻井完成时的斜角应保持86°以上。这一技术的应用时间较早,大庆油田在这一技术的研究应用中,抓住了动态监控、上下方位调整,钻具平稳、多开转盘等技术要点。其中,上下调整是要求工作人员能够对井斜角和铅垂位置进行调整,动态监控是实现对已钻井段、钻具组合定向状态等进行分析,以便进行科学调整的过程,钻具平稳是要求钻具稳定性能较强,这一要点主要受钻具选型和组合设计所影响,而多开转盘则是通过减少摩擦力提升钻速,以保证水平段开钻盘进尺度能够不小于总进尺的75%。

 2.2石油工程技术地质导向钻井技术研究

 地质导向钻井技术的运用需要将导向工具和仪器相结合,并实现了钻井技术与测井技术和油藏工程技术的协同使用。因其具备的电阻率地质参数等,使这一技术在运用中,能够给对地质构造进行准确判断,并对储层特性进行明确,有效实现了对钻头轨迹的控制,使钻井工程的开成功率提升,成本降低。

 2.3石油工程技术大位移井钻井技术研究

 这一技术是现阶段石油工程技术中的高精尖技术之一,能够实现定位井和水平井技术的有效统一。现阶段,这一技术的运用中还存在着很多难点,我国大庆油田企业也加强了对这一技术的研究,不但优化器配套技术和相关理论,并将其应用于浅海区域油田,以充分发挥其实际价值。

 2.4石油工程技术连续管与套管钻井技术研究

 连续管与套管钻井技术主要应用于小眼井、侧钻以及老井加深等方面,由于其所用设备和空间较小,因此具有较大的优势,能够在海上或是限制条件较多的地面的钻井工作中。这一技术在运用时,需要在防喷器上设置环形橡胶,以保证欠平衡压力钻井工作的顺利进行,并起到保护油气层的作用,钻井时通常不需要停泵,钻井液会在这一技术的运用下始终处于循环状态,有效避免井喷。

 2.5石油工程技术深层钻井提速技术研究

 为提升钻井速度、加快石油勘探工作,大庆油田企业对深层钻井提速技术进行了研究。深层勘探主要是对超过两千五百米深度的地质层进行勘探的工作,这一工作多由深层气藏岩性的复杂,导致工作很难进行,硬度较大的岩石会造成钻头的严重磨损,并影响钻井工作效率,而地下的高温也会对钻井设备造成极大的伤害,地下压力层和胶质性较差的破碎性地层会为工作人员的工作造成极大的安全隐患。大庆油田公司对深层钻井提速技术进行了研究,深入研究钻井设计、提速工具、配套技术等。钻井设计优化有利于深层钻井提速提效[3]。大庆油田公司综合考虑了井深、岩性、地层压力等方面的因素,要求深层直井全部用三开井身结构,例如对古深3井进行优化,使其表层套管下深为352m,二开井段用气体钻井技术,套管下深为3180m,三开井段用气体技术与涡轮技术等相结合的方式。最终完钻井深4920m,钻井时间与以往相比缩短了19.37d。同时,根据不同井段选择了相应的高效钻头。另外,大庆油田公司对提速工具进行了研制。其中,液动旋冲提速工具能够实现钻井液流体能量向机械能的转化,减轻了钻头的磨损度,有效提升了机械钻速。涡轮钻具则能够利用钻井液的冲击产生机械能,推动钻头高速运转,有效提升了对高硬、极硬地层的钻井速度。同时,其在地层出水预测技术、气体钻井技术等方面也进行了完善。建立了不同渗透率、不同流动方式等条件下底层出水的判别公式,有效提升了预测精度。完善后的气体钻井技术也在石油钻井中中得到了成功运用,平均钻井周期缩短了25.70d。

  3、结语

 石油工程技术在石油勘探工作中起到了重要的作用,尤其是其中的钻井工程技术的有效运用,能够有效减少安全事故的发生。我国大庆油田公司针对这一技术进行了积极研究,并实现了深层钻井提速技术的有效研究运用,对我国石油工程技术的发展做出了巨大的贡献。

  参考文献:

 [1]马春宇.浅谈石油工程钻井技术的发展[J].科技资讯,2015,5(5):69-70.

 [2]魏斌.关于石油钻井工程技术的探讨[J].中国石油石化,2015,7(14):86-87.

 [3]李瑞营.大庆深层钻井提速技术[J].石油钻探技术,2015,1(1):38-42.

;

非常规油气勘探开发关键技术

建院以来,围绕建设创新型一流研究院的发展目标,提出了核心技术和特色技术研发战略,经过不断完善和调整,逐步形成了四项核心技术和六项特色技术系列。

一、核心技术 ●海相层系油气成藏理论与评价技术 通过开展盆地构造动态演化与恢复分析、高演化海相层系烃源岩动态评价、储层评价与预测、盖层与封盖作用评价、海相层系油气动态成藏与定年技术、海相层系油气评价等方面工作,形成海相碳酸盐岩油气成藏理论与评价核心技术。 ●缝洞型碳酸盐岩油藏开发技术 建立缝洞型碳酸盐岩油藏模式,形成一套表征和刻画缝洞型碳酸盐岩油藏的技术方法,发展和完善缝洞型碳酸盐岩油藏油藏工程数学研究方法、物理模拟和数值模拟技术,形成缝洞型碳酸盐岩油藏高效开发模式和开发效果评价方法。 ●特殊天然气藏开发技术 以川东北、鄂尔多斯盆地、塔里木盆地和松辽盆地天然气勘探和开发建设为依托,建立和集成高含硫碳酸盐岩气藏、致密砂岩气藏、凝析气藏和火山岩气藏开发配套技术。 ●提高收率技术 通过开展大幅度提高收率技术的驱油机理研究,形成物理模拟、数值模拟、提高收率效果与潜力评价、规划编制及方案设计等配套技术,通过项目攻关在油藏物理化学、三次油油藏工程学方面达到国内领先水平。 二、特色技术 ●特殊储层预测技术 通过对塔河油田、鄂尔多斯气田、南方海相碳酸盐岩以及松辽盆地勘探开发的技术支撑,形成碳酸盐岩孔缝洞储层、碎屑岩致密低孔低渗储层、白云岩裂缝型储层、火成岩储层以及储层流体预测技术,并研发集成自主创新方法,为类似地区的勘探提供借鉴和技术储备。 ●油藏综合地球物理技术 针对我国东部老油气田和西部、南方新油气田的开发现状和技术需求,应用高精度三维地震、井中地震(VSP与井间地震等)、多分量地震以及时延地震等先进的地球物理技术,以地震属性精细分析、高精度波阻抗反演以及多学科综合应用研究为主要手段,开展油气藏精细描述和油藏动态监测等研究,研发核心方法技术及软件,形成一套实用化的油藏综合地球物理技术系列。 ●海外油气项目快速评价体系 为快速有效的评价海外油气勘探开发项目,科学决策,规避风险,从勘探、开发、海外公司并购和海外投资环境几个方面,进行信息平台、方法指标体系、决策体系和专家系统等方面的研究,形成海外油气项目快速评价体系。 ●油气地球化学勘探技术 以成烃、成藏等石油地质基础理论研究为重点,油气藏勘探与评价为目标,油气实验地质新技术、新方法和新仪器研制为手段,发展油气地质、地球化学基础理论,完善油气形成与成藏评价和预测技术,集成油气地球化学勘探应用技术系列,建立油气成烃成藏地球化学示踪体系。 ●油气勘探开发科学决策支持系统 从盆地系统出发,统一和完善基础数据库、知识库及其应用平台,整合现有盆地(凹陷)、区带和圈闭目标三个层次的分析评价系统,实现评价的系统化、动态化、定量化和勘探决策部署的科学化、信息化、高效化,最终形成一套核心内容具有原创性、具有自主知识产权和价值观体系的油气勘探科学评价决策支持系统。 ●勘探开发应用信息技术 以成烃、成藏等石油地质基础理论研究为重点,油气藏勘探与评价为目标,油气实验地质新技术、新方法和新仪器研制为手段,发展油气地质、地球化学基础理论,完善油气形成与成藏评价和预测技术,集成油气地球化学勘探应用技术系列,建立油气成烃成藏地球化学示踪体系。

埕北古4井区中深层储集层预测及开发对策

非常规油气特殊的形成机制与赋存状态,需要针对性的特色勘探开发技术。提高储层预测精度和油气单井产能是技术攻关的重点。国内、外长期针对致密砂岩油气、页岩气、煤层气等的勘探开发实践,形成了一套较为成熟有效的核心技术,这些技术各展所能、相映成彰,推进了非常规油气的勘探开发进程。本节简要介绍地震叠前储层预测、水平井钻井、大型压裂、微地震检测、缝洞储层定量雕刻等5项核心技术。

一、地震叠前储层预测技术

近年来,油气勘探开发对地下储层预测和油气分布的成像精度要求越来越高,因此地震叠前预测技术受到各大油公司的高度重视,国内、外均投入很大的力量进行相关领域新技术的研发及应用研究。目前,地震叠前储层预测技术已进入大规模工业化应用阶段。

国外地震叠前储层预测技术发展迅速,方法类型多样,并推出了功能齐全、特色各异、综合性强的商用软件。国内随着勘探开发对象由中高渗碎屑岩常规储层向致密砂岩、缝洞型碳酸盐岩等非常规储层转变,中国石油天然气集团公司组织开展了地震叠前储层预测技术研究,形成了以面向地震叠前反演的保真精细处理、基于岩石物理分析的敏感因子优选、层序格架约束下的层位精细解释、AVO属性分析、弹性阻抗反演、AVO反演等技术为核心的非均质储层地震叠前预测、流体检测配套技术系列。同时,强化应用基础研究,探索了岩性阻抗反演、流体阻抗反演、弹性阻抗系数反演、叠前同步反演、波动方程叠前弹性参数反演、多波波动方程同时反演、PGT含气饱和度定量预测等叠前储层预测、流体检测新技术,为进一步提高非均质储层预测精度奠定了基础。

近年中国石油天然气集团公司还开展了全数字三维地震集处理、高密度地震集处理等配套技术攻关,使得地震叠前道集数据的分辨率、保真度有了较大幅度提高,地震面元的方位角、炮检距、覆盖次数等属性分布更加均匀,为进一步提高地震叠前储层预测技术应用效果提供了保障。

与传统的地震叠后储层预测相比,地震叠前储层预测的精度显著提高,主要是由于叠前地震有更多的信息可以利用,叠后地震主要利用的是地下岩石纵波信息,而叠前地震既包含纵波也包含横波信息。储层物性参数变化时,在纵波和横波信息上有着显著不同的表现,利用这种显著差异性,可以实现储层和流体精确成像,这在单一叠后纵波资料上无法完成。地震叠前储层预测技术,在中国石油天然气集团公司各大探区均见到了明显的应用效果。如在四川龙岗地区深层碳酸盐岩气藏识别应用中,礁气藏预测符合率为75%,滩气藏预测符合率为88%;在四川盆地须二段地震叠前含气性预测中,符合率大于80%。

二、水平井钻井技术

水平井钻井技术是利用特殊的井底动力工具与随钻测量仪器,钻成井斜角大于86°,并保持这一角度钻进一定长度井段的定向钻井技术,是页岩气、致密砂岩气、煤层气等非常规油气低成本高效开发的关键技术。与直井相比,水平井具有泄油气面积大、单井产量高、穿透度大、储量动用程度高、节约土地占用、避开障碍物和环境恶劣地带等优点。

水平井技术近年来在国内、外发展迅速,在提高单井产量和收率方面发挥了重要作用。美国在致密气、页岩气开发上积累了丰富的经验,形成了丛式水平井、批钻、快速钻井以及长水平段水平井等提高单井产量、降低钻完井成本的主体技术,实现了致密气、页岩气等低品位储量的有效开发。目前,全球水平井井数约5万口,主要分布在美国和加拿大。2002年以后,水平井的大量应用直接推动了美国页岩气的快速发展。

美国水平井钻井数从2000年的1144口增长到2010年的9800口,增长了8.6倍。水平井比例从2000年的3.9%增至2010年的20%。水平井应用的主要对象是页岩气,其中2008年美国钻页岩气水平井7282口,其中Barnett页岩中水平井比例已占90%以上。

国内水平井钻井技术日益受到重视,近年来在鄂尔多斯盆地苏里格与长北、塔中、松辽盆地深层火山岩等气田勘探开发中取得了进展,成效显著。如在长庆鄂尔多斯苏里格致密砂岩气区、长北低渗透砂岩气田,通过长期的探索和攻关,逐步形成了以水平井、长水平段丛式分支井等为主的开发技术,为今后大规模致密气田、页岩气的开发积累了经验。在致密砂岩、页岩气开发时一定要转变传统的观念,破除低效储量不能用高新技术的落后观念,树立水平井打快、打好、打长的意识。在水平井打长方面,要求水平段至少在1000m以上。

当前,水平井钻井技术正在向集成系统发展,即结合地质、地球物理、油层物理和工程技术,开发大位移钻井、侧钻水平井钻井、分支井、径向水平井、欠平衡钻井、连续油管等技术,并研制技术含量高的随钻测量(MWD)、随钻测井(LWD)等设备。

三、大型压裂技术

大型压裂技术是提高非常规致密储层渗流能力的关键技术。大型压裂技术突破了常规压裂理论的束缚,主要用大排量、大砂量在地层中造出超过常规压裂长、宽、高的裂缝,扩大泄油气半径,创造“人造渗透率”,提高单井产量,大幅增加了非常规油气储量的动用程度。水平井分段压裂、直井分层压裂等核心技术已经成为美国非常规气的有效开发的核心。2003年,以水平井多段压裂技术取得突破为标志,实现了Barnett页岩气的快速发展,也加快了页岩气领域从发现到开发的节奏。

近年来,中国石油天然气集团公司进一步加大了直井分层压裂、水平井分段压裂关键技术引进和攻关的力度,取得了长足的进步和明显的生产效益。如分层压裂技术在苏里格东区、川中须家河组储层取得了明显效果,苏里格东区分压4层是合层压裂产量的1.7倍,川中须家河分层压裂产量是合层压裂的1.6倍。苏里格气田通过实施水平井分段压裂,水平井初期平均单井日产气达到7.8×104m3,可保持日产气5×104m3稳定生产,增产效果明显。

直井分层压裂技术一般包括封隔器+滑套投球分层压裂、连续管喷砂射孔、环空加砂分层压裂、TAP套管滑套阀分层压裂等。封隔器+滑套投球分层压裂技术已在苏里格气田应用2000口以上,在川中须家河应用110口以上,已成为苏里格气区、川中须家河组直井分层压裂的主体技术。长庆油田引进的Schlumberger公司TAP套管滑套阀分层压裂技术,在苏里格气田和盆地东部完成了4口井现场试验,取得了明显效果。如2010年长庆油田在米37井2402.8~2845.0m井段,用TAP工艺在国内第一次成功进行连续9层分压,注入总液量1672.0m3,加砂量126.4m3,创造了该技术在国内分压层数的新纪录。同时成功实施了钻飞镖作业和关闭产水层作业,实现了个别产水层TAP阀的成功关闭,有效降低了产水层对试气产量的影响。米37井关闭主要产水层山2和盒7段滑套后,试气井口产量从1.89×104m3/d上升到5.70×104m3/d,产水量从16.7m3/d下降到3.6m3/d,大大降低了产水层对试气产量的影响。

水平井分段压裂技术包括裸眼封隔器+滑套投球分段压裂、水力喷射分段压裂等。裸眼封隔器、滑套投球分段压裂技术在苏里格已累计应用57口井,主体为分压4~5段。川庆钻探等单位已实现了工具国产化,并从分压4~5段发展到11段。国产化裸眼封隔器、滑套投球分段压裂工具在苏里格已入井18口,最多分压10段。

吉林油田长深登平2井,是中国石油天然气集团公司目前水平井分段压裂规模最大的井,创造了目前中国石油天然气集团公司水平井压裂级数最多、单井压裂规模最大、单级压裂规模最大3项记录,推动了松辽盆地长岭凹陷致密砂岩气田的规模有效开发。长深登平2井水平段长837m,钻遇气层厚度为755m,分10段压裂,泵入总液量4610m3,加砂838m3。通过用大规模分段压裂,10mm油嘴测试日产气35.8×104m3(油压22.8MPa),目前该井稳定产量17×104m3/d(油压18.5MPa),进一步拓宽了松辽盆地致密气藏有效开发的技术思路。

四、微地震检测技术

微地震又称无源地震或被动地震,在油藏压裂、注水开等生产活动中,地下油气藏一般会伴生类似天然地震、烈度很低的微地震现象。产生微地震的位置可以根据反射器的类型确定,根据样密度和纵波来计算确定。

微地震技术可以用来检测油气生产层内流体的流动情况,以及裂缝的活动情况,可以用来研究在断层带附近发生的自然地震。微地震在油气勘探开发中常用来监测油藏生产、作业效果,为优化油气藏管理、致密储层勘探开发提供了决策依据。

目前,微地震技术在国外油藏监测以及国内矿山开监测等生产领域,已是一门较成熟的技术,也是近年来国外页岩气勘探开发过程中,改进页岩气增产效果的一项必不可少的专项技术。

页岩气的开发主要依赖于通过大型压裂,建立一种长而宽的人造裂缝通道,将大量的非常复杂的裂缝网络连通,从而增大泄压面积。微地震监测技术是了解人造裂缝的几何形态、改进增产措施或加密井效果的关键。页岩气开发过程中的微地震压裂监测技术,是将检波器放置在距压裂井小于600m的观测井中(一般是直井),对压裂井在压裂过程中诱发的微地震波进行持续的监测,动态地描述压裂过程中裂缝生长的几何形状和空间展布形态。

微地震分析能够及时了解人造裂缝产生的方向、延伸长度等信息,还可实时监测控制压裂的过程,提供压裂增产期间关于多次压裂深度和宽度的宝贵信息,做到对压裂方案进行优化选择。如利用实时裂缝监测资料,可确定裂缝尺寸的异常变化,从而使分级压裂方案得到及时调整,并分析该调整方案对整体压裂方案产生的影响;同时,可确定裂缝是否偏离设计层位,确定封隔方法的效果达到了何种程度。在分级压裂过程中,如果确定某层位得到了重复压裂,可终止当前压裂措施并开始下级压裂;如果确定目前施工层位正在产生多条裂缝,根据压裂液与支撑剂的剩余量,适当延长该层位的压裂时间;如果确定裂缝遇到了断层,立即停止压裂施工。裂缝监测在页岩气压裂中占有很重要地位,通过裂缝监测,确定裂缝方位和展布,计算改造体积,为产量预测、新井布井、压裂设计提供依据。此外,利用微地震检测技术还可以对页岩压裂前后的渗透率进行估算。

我国在塔里木、华北、长庆等油田曾利用微地震技术进行过油藏监测方面的先导性试验,在注水前缘监测、区域天然裂缝预测和剩余油分布识别等方面,取得了一定效果。但在页岩气勘探开发中的应用还处于初期探索阶段。

五、缝洞储层定量雕刻技术

缝洞型储层具有大规模层状与准层状分布特征,部分连通型缝洞可以形成连续型油气藏,是碳酸盐岩的重要油气勘探开发领域。碳酸盐岩缝洞型储集空间一般肉眼可见,包括溶蚀孔、洞、缝及大型洞穴、裂缝等,具有极强的非均质性。

缝洞型储层前期研究主要是利用地震剖面“相面法”进行定性识别目标,如“羊肉串”模式,但是由于受深层地震资料信噪比低的影响,缝洞难以精确成像。21世纪以来,中国石油、中国石化等公司组织了缝洞储层定量雕刻技术攻关,初步实现了复杂缝洞性储层的雕刻与定量化评价,已在塔里木盆地奥陶系、鄂尔多斯盆地奥陶系等缝洞型油气勘探发现中发挥了关键作用。

钻前缝洞型储层定量雕刻主要依靠地震资料,以高保真地震成像处理为前提,以模型正演和岩石物理分析为基础,通过“三定法”,实现缝洞型储层或油气藏的定量化预测。“三定”是指:①定位置,利用高精度三维地震和各向异性偏移技术,实现地震信息的高精度成像;②定形态,利用振幅雕刻技术(洞穴)和方位各向异性技术(裂缝),实现缝洞体系立体描述;③定规模,利用岩石物理分析和正演模拟技术,实现储集空间定量化预测。如在塔里木盆地塔北和塔中地区,应用缝洞体系立体描述技术,缝洞储层钻遇率达到100%。应用PG剖面、流体因子等多属性融合技术,缝洞储层流体预测符合率达到80%以上。

碳酸盐岩缝洞体系地震定量雕刻技术系列包括4项核心技术:①井控地震保真处理技术,能够促进地震剖面串珠反射更加清晰、数量明显增多;②叠前地震偏移技术与各向异性处理技术,能够精细刻画不同级别的断裂系统;③溶洞模型正演技术,能够建立缝洞大小、填充与地震响应量版;④三维可视化雕刻技术,能够对裂缝、溶洞进行独立雕刻和融合研究,分析缝洞系统的连通性,精细描述缝洞的空间关系。

钻后缝洞型储层定量评价,主要依靠微电阻率扫描成像测井技术。目前已形成了以电成像测井为主导的有效储层识别及缝洞储层参数定量评价技术,建立了多种较为有效的流体识别方法图版,显著提高了此类储层的测井评价能力。另外,开发的远探测声波反射波成像测井新技术,使得探测距离由3m拓展到10m,有利于发现邻近分布的隐蔽缝洞,提高评价精度。

十大石油科学技术有哪些?

宋美虹 季雅新 王玉芹 杜玉山

摘要 针对埕北古4井区东营组油藏特有的地质特征,在深入分析埕岛油田东营组相似区块开发经验的基础上,应用储集层预测技术、数值模拟方法以及初步的经济评价,对该井区的储集层分布进行了预测;对其关键开发技术政策进行了优化研究;并以此为依据进行了开发方案部署。

关键词 埕北古4井区 储集层预测 相似区块类比 数值模拟 经济评价 开发方案

一、引言

目前,海上产能建设的主阵地已由浅层转移到中深层。中深层油藏地质特征复杂,地震资料反射能量弱,中高频率损失严重,信噪比与分辨率都较低。适合于浅层的储集层预测技术在中深层已不适用。因此,发展完善中深储集层地震预测技术,对落实其石油地质储量,提高总体开发效果和经济效益,具有重要指导意义。

埕北古4井区东营组是主力含油层系。油层埋深在2900m以下,属于中深储集层。为了描述储集层、落实石油地质储量、进一步指导开发方案的编制、降低开发井的部署风险,通过多方调研,查阅了国内外有关信息资料,对本区先后用TRP软件和JASON软件进行了地震储集层预测研究。实践证明,这两次攻关研究是较成功的。

由于中深层油藏的油藏类型、储集层特征及流体性质与主体已开发的浅层馆上段油藏不同,浅层的开发技术政策不适用于中深层油藏。在对埕岛油田东营组已开发区进行深入分析的基础上,针对本区含油井段较短、油层少且主力层突出、油水关系简单、储量规模不大等地质特点,制定了开发原则。通过数值模拟和经济评价,对本井区的开发方式、布井方式、油速度以及水平井段长度等进行了研究,确定了以天然能量开为主、于注水补充能量开发的开发方式,优选出定向井与水平井组合的布井方式。方案设计总井数5口,其中定向井3口,水平井2口。动用储量556×104t,预计建成年产能力18×104t,开发15年,可累积生产原油102×104t。

对埕北古4井区中深层特有的地质和油藏特征、储集层预测及开发对策做了深入研究,总结出了一套相关的方法。该研究成果对具有类似地质特征的油田新区储集层预测及方案设计具有参考价值。

二、工区概况及其油藏地质特征

1.工区地理位置及勘探现状

埕北古4井区位于埕岛油田东北部,西邻胜海古2及胜海古3井,南与埕北8井相接,水深15~20m,构造位置位于埕宁隆起埕北低凸起东斜坡下第三系超覆带。

1996年1月10日完井的胜海8井为该井区第一口探井,完钻井深3600m,完钻层位中生界,电测解释油层2层26.7m,均为东营组。经测试,在2021.3~3052.0m井段获日产油224t,气22453m3。此后,又相继完钻3口探井。埕北古4井区4口井6个层段试油,3口井四层段获工业油流。埕北古4井区有3口井试。

2.地层层序及含油层系

该井区自下而上钻遇的地层有古生界、中生界、下第三系沙河街组、东营组、上第三系馆陶组、明化镇组及第四系平原组。发现了古生界、中生界、沙河街及东营组四套含油层系。其中,东营组是埕北古4井—胜海801井区的主力含油层系。

3.东营组沉积特征

东营组其下部为湖相沉积,中间为扇三角洲前缘亚相沉积,上部为扇三角洲平原亚相沉积。其底部发育大段泥岩夹薄层砂岩,中间发育大段厚层砂岩,上部为砂泥薄互层,具有“底超顶剥”的特点。埕北古4井—胜海801井区东营组构造位置比较低,地层发育相对比较全,只有埕北古4井下部缺失东营组部分地层,其他3口井底部地层均发育齐全。埕北古4井、胜海801井及胜海8井顶部有少量地层被剥蚀。区内东营组地层厚度为610~890m。其中,埕北古4井和胜海801井厚度小,胜海8井及胜海10井厚度大。

4.储集层特征

埕北古4井—胜海801井区东营组可分为8个砂层组,油层主要分布在6、7砂层组,油层埋藏深度为2914~3430m,含油井段长516m,平均单井钻遇东营组油层14.9m/3层。最大单井有效厚度29.5m,最小4.0m。其中,埕北古4井钻遇油层最多,共29.5m/7层,均为一类有效厚度;胜海801井钻遇油层最少,共4.0m/1层,为一类有效厚度;区内最大单层有效厚度14.5m,最小单井有效厚度1.1m。油层发育主要受岩性控制,其次受断层控制。只有与断层相接触的砂体才可能形成有效圈闭而含油。

三、储集层预测研究

1.原始地震资料品质分析

本次储集层预测处理地震资料面积约60km2。涉及5口井(胜海10、埕北古4、胜海8、胜海801、埕北古403)。所用的地震资料时窗为1500~3500ms,样间隔2ms,三维网格为25m×25m。

地震叠偏数据体的分辨率、信噪比、保真度等品质分析如下。

(1)分辨率

目的层的平均速度取3000m/s,可分辨厚度为λ/4;目的层顶部率约30Hz,分辨厚度约25m;目的层中部率约26Hz,分辨厚度约29m;目的层底部率约22Hz,分辨厚度约36m;

(2)信噪比

总体看,该区地震资料信噪比较好,尖灭点、断点、超覆沉积现象比较清晰,但不足之处是剖面偏移划弧现象严重,造成某些断点不清和偏移干扰等负效应。

(3)保真度

经过偏移处理的地震资料,数据格式是32位浮点,2ms样,数据体能量较均衡,资料有一定的保真度[1]。

2.储集层预测用的方法

为了描述储集层、落实石油地质储量、进一步指导开发方案的编制、降低开发井的部署风险,先后用两种方法进行了地震储集层预测研究[2]。先于1998年底,用TRP软件;后于1999年3~5月,用JASON软件。

1)TRP软件

(1)反演原理

由测井资料给定的初始阻抗模型Z(t)与从地震资料提取的实际子波W(t)正演模拟得到当前道的合成记录。在地质模型、地震特征约束下,通过合成记录与实际记录的相关对比,经过反复迭代来调整当前道的波阻抗模型。当两者误差满足要求时,对应的阻抗模型即为当前道的波阻抗反演结果。

(2)处理流程

TRP软件为井约束下的高精度三维储集层参数反演技术。其处理过程主要包括测井资料处理、建立单井波阻抗模型、建立精细地震地质模型、多井约束三维波阻抗反演等。

测井资料处理 对各井测井资料进行环境校正,消除井径、泥浆滤液及压实作用等对测井曲线的影响。经标准化处理后,井之间波阻抗的相对差异则有较大程度的削弱,且横向的非均质性也得到较好的保持。

建立单井波阻抗模型 建立较准确的井中时深关系及井中波阻抗与岩性的对应关系。利用井的速度和密度曲线得到井的波阻抗,进而得到深度反射系数;根据井的时深关系求得时间域的反射系数;然后从井旁道提取子波,子波与反射系数褶积得到井的合成记录;依据合成记录与井旁道相关系数最大原则,扫描出最佳井旁道。同时,也求得了最佳时深关系。再通过迭代调整得到最佳井旁道的波阻抗作为井的波阻抗,最佳井旁道就是井的对应地震道——道,也就是用遗传算法进行波阻抗外推的母体道。绘出各井的波阻抗图进行对析,如发现不合理之处,返回上一步调整处理,直到合理为止。

三维地震地质模型解释和处理 三维地震地质模型处理包括层位处理和断层处理。首先从井的标定层出发,对该区的层位进行详细的追踪解释,解释出层位和断层;其次,通过插值得到断面数据;对层位加断层边界进行内插,得到该层的层位平面图。对该区所有层都进行如此处理,结果即为三维地震地质模型。

三维波阻抗反演 三维波阻抗反演首先要形成控制文件,然后进行单井波阻抗反演,最后进行临接区反演。

控制文件确定了一口井的反演范围和顺序,一口井控制的范围是一个多边形区域,一般以断层为边界,以目的层为趋势,在井间留出20道以上的过渡区。

根据单井控制文件,从井对应的道出发,一圈一圈地向外反演。要反演的地震道从以自身为中心的小面元中选取最佳初始波阻抗模型,在地质模型、地震特征约束下,用迭代法调整所选定的初始波阻抗模型,当波阻抗对应的合成记录与当前地震道的相关系数达到80%以上时,认为得到了当前道的波阻抗结果。因为考虑了地震波场在各个方向的分布与变化因素,反演结果稳定可靠。

临接区包括断层区和井间过渡区。对于临接区的道,首先从八个方向在要求的范围内查找已反演的道,在查找过程中,如果那个方向遇到断层,或者在要求的范围内找不到已反演好的道,则忽略这个方向;然后用这些道插值出临接区道的初始波阻抗,再通过迭代得到该道的波阻抗结果。

(3)软件反演特点

按传统算法以井点标准波阻抗作为道分井区反演,利用完钻井的资料作为约束条件,提高了井周围预测精度;储集层成层性显示较好,储集层边界、断层清楚;反演剖面分辨率较高。

2)JASON软件

(1)反演原理及处理流程

本次反演工作用了JASON软件中的稀疏脉冲反演方法。其基本设是反射系数是稀疏的。该方法适用于区内井数较少的开发准备阶段。其主要优点是能获得宽频带的反射系数,从而使反演得到的波阻抗模型更趋于真实。

稀疏脉冲反演的主要过程是:通过最大似然反褶积求得一个具有稀疏特性的反射系数序列;通过最大似然反演导出宽带波阻抗。

(2)JASON反演的特点

子波的选取 在地质框架模型基础上,利用多井估算多个子波,由控制点估计的子波进行内插得到空变子波。能够监控子波的波形、相位和频谱,也可以监控各种各样的子波所产生的效果。使用空变子波合成的地震记录与地震资料的相关性好,从而达到最优效果。

宽频带的地震资料反演 JASON反演所导出的结果是一个宽频带的反射系数序列和宽频带的波阻抗数据,其低频分量是在地质框架模型基础上利用所有层速度建立低频模型,并与反演结果道道相并而得到的。从而保留了测井曲线的主要地质特征。

根据工区内所有完钻井建立整体三维模型,进行整体反演。

3.反演结果和砂体预测

根据区内已完钻的4口井分析,东营组5砂层组以上储集层很发育,但基本不含油,主力油砂体分布于6、7砂组。东营组的储集层主要沿斜坡带分布,高差大,空间速度变化大。依据本地区钻井资料及地质特征,结合两套软件处理的方法原理,在解释过程中,对剖面的色标不断加以微调,尽量准确反映主力油砂体,从而达到最佳预测效果。在反演剖面上,不同深度段的储集层颜色不完全一样。4口井储集层段的速度范围是3300~4100m/s。

结合储集层沉积模式,对两套波阻抗反演处理成果分别进行了地震储集层精细解释,重点描述埕北古4井区砂体。

TRP方法共解释了4个砂体,其中有井钻遇油砂体2个(72、73~5),预测新砂体2个。

JASON方法共解释埕北古4井区3个砂体。在JASON软件处理的剖面上,埕北古4井72及73~5中间的隔层反映较差,将72、73~5作为一个砂体进行解释。另外,预测出了对应于TRP软件解释结果的两个新砂体。

4.预测效果分析

两銮软件预测的各砂体平面展布形态及面积大致相近,JASON软件预测各砂体的面积、厚度比TRP软件预测的要大些;两套软件反演结果与井的吻合都较好。从过井剖面上看,TRP反演结果的分辨率比JASON略高;本次反演所利用的井较少,在一定程度上影响了离井较远地区反演结果的精确性,在将结果应用于整个工区时还应该结合其他的资料进行综合分析,以提高决策的精确性。

四、关键开发技术政策研究

1.相似区块开发效果初步分析

到1999年9月底,埕岛油田东营组共上报Ⅲ类探明含油面积8.1km2,石油地质储量1429×104t,主要分布在埕北11、12、21、斜101、35、151等6个区块,已于1993—1994年全部投入开发,累计建成产能30×104t,累积产油132.1×104t,出程度9.3%。

埕岛油田东营组各区块的地质特征差异较大。针对本区地质开特征,首先对东营组已开发区块进行筛选,即从含油层位、沉积类型、储集层物性及原油流体性质等方面进行对析,埕北古4井区与已开发的埕北21、151块比较相似,为了总结已开发区块经验,指导埕北古4井区东营组开发部署,对相似区块的关键技术政策进行系统分析。

(1)天然能量开发效果

埕岛油田东营组相似区块油藏地饱压差大(17.3MPa),具有较活跃的边底水,弹性产率为182×104t/MPa。根据石油天然气行业标准,当出程度1%时地层压降小于0.2MPa,弹性产量比大于30,为天然能量充足。而东营组相似区块出程度1%时的地层压降为0.05MPa,弹性产量比为111,天然能量充足。

至1999年11月底,埕北21、151块上报探明储量385×104t,共投产4口井,单井日产油能力29t,综合含水65.5%,年产油3.6×104t,累积产油37.6375×104t,出程度9.8%,弹性出程度较高。

(2)初期单井产量高,产量递减较快

埕北151块、埕北21块试油期间油指数4.3t/(d·MPa·m),投产初期单井产量较高,平均日产油能力为113t,油指数4.0t/(d·MPa·m)。

东营组投产井均依靠天然能量开发,产量递减较快。埕北21块由于只有埕北21井一口井生产,单井控制储量大,自1994年2月投产以来,产量一直处于相对稳定阶段,1998年5月进入产量递减阶段,递减较快,年递减率为27.6%;埕北151块产量递减较快,年递减率为32.4%。

(3)厚层块状油藏开效果明显好于多层层状油藏

埕北151块油层层数多,平均单井钻遇油层4层18.7m,单层厚度小,油层连通性好,油水关系复杂,属典型的层状油藏;埕北21块油层单一,单层厚度大,钻遇油层1层31m,有效厚度29m,油水关系简单,属厚层块状油藏。

从相似区块的开效果来看,属于块状油藏的埕北21块明显好于属于层状油藏的埕北151块。截止1999年9月底,埕北21井日产油63.1t,综合含水54.5%,累积产油26.6×104t,出程度11.3%;埕北151块开井3口,日产油77t,综合含水57%,区块累计产油10.62×104t,出程度7.1%。

(4)单井控制储量可以适当放大

埕岛油田东营组已开发区单井控制储量50×104~235×104t,平均65×104t,略大于馆陶组单井经济极限控制储量(62×104t),小于主体北开发区馆上段实际单井控制储量(81×104t)。根据东营组各区块的开发效果,单井控制储量较大的埕北21井区(235×104t)开发效果明显好于其他区块。

东营组较馆陶组储集层物性差,但原油性质较好,流动系数1487×10-3μm2·m/(mPa.s),大于馆陶组(551×10-3μm2·m/(mPa·s);东营组油藏埋藏较深,岩石压缩性小,压力传导较快,导压系数5.56μm2·MPa/(mPa.s)大于馆陶组1.42μm2·MPa/(mPa·s);东营组油藏埋藏较馆陶组深,单井钻井成本较大,因此,东营组油藏单井控制储量可以适当放大一些。

2.关键开发技术政策研究

为了合理地制定埕北古4井区东营组油藏的开发技术政策,在借鉴相似区块的开发经验的基础上,对本区又进行了数值模拟研究[3]。

1)三维地质模型的建立

数值模拟目的层为埕北古4井实际钻遇的72和735两个油砂体,模型区叠合含油面积3.58km2,石油地质储量376×104t。

根据实钻井资料及储集层预测结果,建立了每个砂体的顶部深度、砂层厚度、有效厚度、渗透率、孔隙度等参数场。

在对相似区块和本区现有资料深入分析的基础上,结合相关图版及经验公式[4,5]确定了本区数值模拟所需的油藏工程参数,建立了岩石、流体等模型。

2)数值模拟方案设计

埕北古4井区油层较少且主力层突出、油水关系简单、储量规模不大。根据数值模拟研究内容(开发方式、不同布井方式、油速度以及水平井段长度等)进行了数值模拟方案设计。首先,在叠合有效厚度大于8m范围内,用650m左右井距,按照油砂体不规则布井,包括老井埕北古4井在内,部署6口定向井作为布井方案一;在此基础上将定向井改为水平井,用定向井与水平井组合的布井方式,又设计了4种布井方案;再以这5种布井方案为基础,分别改变生产压差、水平井段长度及开发方式,共组合设计了14个方案供数值模拟研究。

3)数值模拟结果分析

(1)生产压差优化

为了分析不同生产压差对开发效果的影响,将方案1~10分成5组,每组的2个方案只是生产压差不同,而布井方式、水平井段长度是相同的。

从数值模拟预测的累积油量与时间的关系曲线可以看出,每组的2个方案相比,开发初期生产压差3MPa的累积油量明显高于2MPa的;而到开发后期相差不大,生产压差3.0MPa比2.0MPa平均累积多产油0.25×104t,出程度提高0.07%。总体来看,生产压差对开发效果影响不大,生产压差3.0MPa略好于2.0MPa。

根据埕岛油田东营组已投产井取得的测压资料统计,平均生产压差3.14MPa。埕北古4井试期间,6~12mm油嘴,生产压差为2.7~6.2MPa,因此,埕北古4井区定向井生产压差取3.0MPa。

(2)布井方式优化

在生产压差优选的基础上,对5种不同布井方式进行了优化研究。

从数值模拟预测的5种不同布井方案的累积油量与时间的关系曲线可以看出,定向井与水平井组合的方案比纯定向井方案开发效果好些,累积油量最大差值为2.8×104t;井多的方案比井少的方案好,但井数越多总投资也越高,因此,需要对各方案进行经济评价[6]

胜利石油管理局建设项目经济技术评估咨询公司.胜利海上埕岛油田1999年产能建设方案(经济评价报告).1999.

,以进一步优选布井方式。

根据经济评价结果分析,布井方案3的经济效益最好,即埕北古4井区用3口定向井,1口水平井的布井方式。

(3)水平井段长度优化

优选方案(即方案3:水平井段500m、3口定向井1口水平井、生产压差3MPa)以后,改变水平井段长度,进行模拟计算,研究水平井段对开发效果的影响。根据数值模拟结果分析,随着水平井段长度的增加,单位长度累积油量增加幅度减小。结合目前钻井工艺水平,水平井段取500m左右较为合适。

开发方式优化 埕北古4井区天然能量比较充足,但地饱压差比相似区块小,开期间随着地层压力下降油层脱气严重,需注水补充能量开发。又由于本井区距主体已开发区较远,储量规模较小,不宜上大规模的注水设备。具体部署时根据油井钻遇油层及投产情况,考虑构造低部位一口井适时就地取水,补充能量开发。并对枯竭开和补充能量开的开发效果进行了对析。

根据数值模拟结果分析,注水补充能量的比枯竭开的累积多产油26×104t,出程度提高6%。由于注水补充能量的投资较枯竭开的高,最后推荐枯竭开和注水补充能量开两种开方案进行经济评估。

3.油藏工程方案部署

图1 埕北古4井区开发方案井位部署图

根据储集层预测、数值模拟研究、初步经济评价结果,结合相似区块的开发经验,在有井钻遇的落实砂体上部署1口水平井、3口定向井,其中利用埕北古4井老井1口、定向井G4A-1井兼探新砂体Ⅰ、定向井G4A-2井兼探新砂体Ⅱ。新砂体Ⅰ若是满含油则在其上部署1口水平井G4A-平2井。如此埕北古4井区2个落实砂体、2个预测砂体,共部署5口开发井,预计建成年产能力18×104t(图1)。

由于本区只完钻1口井,资料较少,对有井钻遇的主力油砂体油水界面深度以及新砂体是否含油难以准确判断;另外,两种深层储集层预测方法在海上是第一次应用,对其储集层预测精度没有十分把握,由此部署的方案存在较大风险。为了尽最大可能规避风险,要求钻井顺序必须严格按照方案要求实施。

五、结论

利用两种预测方法所描述的储集层,在平面上的分布基本重合,且形状、砂层厚度比较接近。说明这两种方法所描述的储集层基本可信。

埕北古4井区距油田主体远且规模较小,应用以天然能量开为主,适时就地取水补充能量的开发模式。

针对埕北古4井区中深层特有的地质和油藏特征,探索和开发了一套储集层预测和开发对策研究的方法和技术,对具有类似地质特征的油田新区具有参考价值。

致谢 滩海室周英杰、杜玉山、王军、隋淑玲等高级工程师参加了该项目的部分研究;滩海室范崇海、张强、王海虹、柳文秀、曲全工等同志参加了研究工作。在此一并表示感谢。

主要参考文献

[1]俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1993.

[2]刘企英.利用地震信息进行油气预测.北京:石油工业出版社,1994.

[3]李福垲.黑油和组分模型的应用.北京:科学出版社,1996.

[4]陈钦雷.油田开发设计与分析基础.北京:石油工业出版社,.

[5]陈元千.实用油气藏工程方法.东营:石油大学出版社,1993.

[6]中国石油天然气总公司局,中国石油天然气总公司规划设计总院编.石油工业建设项目经济评价方法与参数(第二版).北京:石油工业出版社,1994.

国家电网大数据应用 增强企业核心竞争力

1.塔里木盆地山地超高压气藏勘探技术和克拉2大气田的发现 

综合石油地质、地球物理勘探、钻井、测井与测试技术等多学科、多专业联合攻关的成果,解决了塔里木盆地库车地区因地形起伏剧烈、表层岩性多变、地下逆冲断层发育而引起的一系列复杂的山地油气勘探技术难题,形成了一套比较成熟的适用于库车前陆盆地的勘探技术。在地震信息集、资料综合解释的各个环节,都有技术创新,提高了构造成图的精度;攻克了超高压层和膏盐层的钻井技术;研究了高陡复杂构造的地质建模和圈闭描述技术、前陆盆地的高压油气藏描述技术和石油地质综合评价技术等。进而,总结了库车前陆盆地逆冲带油气田(藏)特征及其分布规律,指导了该区的油气勘探实践。共发现和落实各类圈闭46个,提供钻探井位26口,探井成功率达到50%。发现了克拉2大气田(探明天然气储量2506.1亿立方米),以及依南 2、吐孜1、大北1、克拉3等一批天然气田,为"西气东输"工程提供了基础。

2.鄂尔多斯盆地上古生界天然气富集规律及勘探技术研究和苏里格庙大气田的发现

通过盆地沉积史、构造发展史和古地温演化史分析,总结了鄂尔多斯盆地具有大面积广覆式生气、水喉封隔等致密砂岩气田和深盆气田特征。深入研究鄂尔多斯盆地上古生界大气田形成地质条件、岩性气藏深盆气藏成藏过程、分布规律及中高渗透层的高产条件,;通过攻关,形成了以盆地分析模拟、储层横向预测、气藏综合描述等技术为主的九套综合配套技术系列,重新评价了上古生界天然气总量为6.76- 10.3万亿立方米,超过原评价数的三倍以上,为进一步勘探提供了科学依据。

科技攻关与勘探实践紧密结合,通过对评价出的五个有利的详探区与预探区的钻探,在苏里格庙、榆林、乌审旗地区均发现了大气田。在榆树区6000平方公里勘探范围与乌审旗7200km2勘探范围内,均已探明天然气储量超过1000亿立方米的大气田;特别是探明了苏里格庙大气田,在2万km2的勘探范围内,已探明天然气储量2204亿立方米,控制储量1000亿立方米,预测储量2013亿立方米。

3.大庆油田年产5300万吨至2000年稳产技术

形成了大庆油田高含水后期薄差油层精细描述和识别技术,建立了大庆油田各类储层的三维定量地质模型,并运用多学科技术研究剩余油形成机理,建立了各类剩余油气综合定量描述方法。进一步提高了储层井间参数预测符合率,剩余油预测符合率,水淹层测井分辨率和解释符合率。在此基础上,形成了一套行之有效的剩余油挖潜技术。三次加密单井增加可储量5000吨,预计可钻7000口井。经测算已增加可储量2487万吨。

形成了大庆低渗透油藏油气富集区筛选、经济可储量评价技术和方法,提供了较多开发的区块。低渗透油田试验区块油速度达1.2%。大大降低了百万吨产能建设投资。形成了大庆油田注聚合物出液高效处理及动态监测技术;聚合物配注系 统国产化及聚合物管道熟化技术;深度调剖技术,增加百万吨油量的投资成本比" 八?五"下降15%以上。到2000年底,低渗透油田年油量达400万吨,注聚合物年产油 800万吨以上,实现了大庆油田年稳产5300万吨的目标。

4、 GRISYS/WS-V5.0地震数据处理系统及KL Seis 1.0地震集工程软件系统

GRISYS地震数据处理系统 GRISYS/WS-V5.0在GRISYS/WS-V4.0的基础上,创新发展了高分辨率处理软件包、交互折射波静校正软件包、交互精细速度分析软件包、 VSP处理软件包、交互储层综合分析软件包等新技术,使其更加适应于我国陆相盆地沉积的薄互层油气藏勘探和西部复杂地表区的油气勘探.经过对大庆、辽河、胜利、新疆、华北、二连、中原、河南、滇黔桂等地区的资料处理,均取得良好效果,对克拉2 大气田的发现提供了主要的技术支持。目前已安装此系统60套,创直接经济效益2400 多万元,节约了大量引进国外软件的费用。

KLSeis 1.0是国内第一套涵盖了地震野外数据集全过程,方法先进、功能齐全,适用性广的集系统软件。经专家鉴定认为,从整体上处于国际领先水平。目前,已有中油集团公司、中石化集团公司、海洋石油总公司下属的16家物探专业公司配备了该系统软件,推广应用近百套,技术经济效益十分显著。

5、侧钻水平井钻配套技术

建立了针对砾岩油藏、稠油、高凝油油藏侧钻水平井设计的油藏工程方法,包括对开发区块剩余油定量描述、侧钻水平井开机理和应用数值模拟技术研究,以及侧钻水平井开效果评价方法等;在钻井技术上,通过建立钻井轨迹模型,总结了侧钻开窗原则、方式,井眼轨迹控制技术、井下钻柱磨阻、稳定性、相容性、钻具及其造斜能力等,开发了应用软件,用以指导钻井施工;针对不同地层条件在完井和油工艺技术上有所创新。应用以上技术,先后在新疆砾岩区块完成侧钻水平井8口,初期日产油相当原井日产量的2.5倍,为该区块平均日产的2.4~3.9倍。在辽河油田共完成稠油开的侧钻水平井11口,平均日产为原井产量的2~4倍,取得明显经济效益。

6、微电阻率扫描成像测井系统

微电阻率扫描成像测井仪器可测量井下地层非均质特征(裂缝、溶洞和层理等)、结构特征和构造特征,是沉积相分析、裂缝定量评价、岩心对比、薄层划分、非均质油气藏勘探等方面的重要手段。过去一直是引进国外的设备和服务。该系统研制成功,先后在大庆现场试验测井4口,在大港测井4口,裂缝识别和地质特征划分的符合率达95%。

该成果是国内独立研制的第一支成像测井仪器,仪器(系统)设计中用了自适应高温承压密封极板、电扣信号分时多波形波样、集软件平台和共享存储器技术的地面接口等多项先进技术

7、裂解汽油加氢催化剂

开发了系列裂解汽油加氢一、二段催化剂,目前有多种牌号实现了工业应用,替代了进口,取得了良好的经济效益和社会效益。

高负荷裂解汽油一段加氢催化剂LY9801,具有运转空速高,加氢活性好,选择性好,积炭量低,再生性能好等特点,能够满足各乙烯生产厂家在不改变或较少改变现有设备条件下即可达到扩产增效的目的。先后在吉化、中原、燕化、大庆、上海金山、兰州石化等厂家实现了工业应用,该催化剂还能适应于C5~204℃裂解汽油,全馏份一段加氢及高胶质裂解汽油(原料胶质30~60mg)的加氢。该催化剂自实现工业化以来,累计创效近4000万元,产生了重大经济效益。

高负荷裂解汽油二段加氢催化剂LY9802,运转空速可由2.8h-1提高到4.5h-1。该催化剂于2000年7月在上海金山实现工业试验,成功后可向其它厂家推广应用,其社会效益和经济效益十分可观。

适应于硫含量多变的裂解二段加氢复合床用催化剂LY02,可用在总硫为30~ 1100ppm的裂解汽油的加氢,已先后在扬子、盘锦、吉化、茂名等厂家使用。

8、一交一焙超稳分子筛及LANK-98催化剂的开发生产

该分子筛的制备工艺具有生产工艺简单、产量高、成本低等特点,同时用一交一焙分子筛制备的催化剂,具有活性高、选择性好、重油转化能力好、抗污染能力强等特点。

一交一焙超稳分子筛与新型高活性单体配合生产出了LANK-98催化剂,该剂活性高、堆比可在大范围内调整,并具有非常好的孔分布梯度,对裂化大分子具有很好的作用,不仅适应于重油催化装置,也适应于掺炼渣油的蜡油催化装置。该剂在大连炼化公司二催化装置应用结果表明,综合性能优于进口催化剂。目前该剂已销往全国19 家炼厂,销量达5500吨,为炼厂创造了3000万元以上的经济效益。

9、ZJ70D直流电驱动钻机

ZJ70D钻机是我国石油系统研制的第一台7000m超深井钻机.该钻机按SY/T 5609《石油钻机型式与基本参数》标准和有关技术要求设计制造,主要机件符合美国API规范 .其主要技术参数为:名义钻井深度7000m(41/2in钻杆)~6000m(5in钻杆);最大钩载4500KN;最大钻柱重量220t;绞车最大输入功率1470kW(2000hP),4档无级变速; 提升系统绳系6×7,钢绳直径φ38mm:泥浆泵功率2×1180kW:转盘开口直径925.5mm (371/2in),2档无级变速;井架为前开口型,高45m;钻台为双升式,高9m.该钻机在国内首次用了国产液压盘式刹车,司钻控制信号用双线传输形式,提高了控制系统的可靠性。

新疆钻井公司塔里木油田FK430-H井,使用ZJ70D钻机用5im钻杆,安全完钻达 6090m,达到该钻机设计的钻井深度。

该钻机已累计订货11台,交付生产使用9台,其中,新疆、长庆、青海、吐哈、华北、大港、中原等油田已先后投入使用.交付新疆的2台分别于1999年和2000年赴阿尔及利亚、伊朗钻井,长庆、青海的ZJ70D钻机也均为外国石油公司承包钻井,增强了我国钻井队在国际市场的竞争力。该钻机投入生产制造后,已实现产值14500万元。

10、管道环缝自动焊接技术及设备研究

管道全位置自动焊接技术是当今世界管道焊接(特别是长输管道)的重要技术,涉及到机械制造、焊接、计算机控制和数字信号处理等多种技术领域,要求设备先进 ,焊接效率高、质量好。PAW2000样机研制完成后,在施工现场进行了总数为3.3的公里管线焊接应用,X射线探伤合格率为96.5%; APW-1型样机完成后,在绥中36-1输油管线焊接应用,焊缝成型美观,X射线探伤合格率达98%,焊接效率是手工焊接的三倍;该两种样机,经专家评审认为,均整体达到国际同类设备的先进水平.PAW2000型焊机已生产20余台套,配备到穿越青海、宁夏、甘肃三省区的涩宁兰输气管线建设现场。

道琼斯指数是什么?

国家电网大数据应用 增强企业核心竞争力

从构想到实践,从论证到试点,国家电网公司大数据应用已经驶向快车道。

在国家电网公司2014年工作会议上,公司党组明确提出,要强化数据分析,提升数据应用水平和商业价值。去年年底,国家电网公司在总结以往研究经验的基础上,正式启动了企业级大数据平台的设计研发和试点建设工作。经过近一年时间的试点实践,目前,大数据已经广泛应用于电网运行、经营管理以及优质服务三大领域,并取得显著成效。

大数据作为重要的战略已经在全球范围达成共识。2011年,一些国际组织便发布报告看好大数据;2012年开始,英国、法国、美国等国家相继启动了大数据发展规划。国内,以大数据为主导的信息化浪潮来势凶猛。去年3月,大数据被写入工作报告;今年8月,院印发《促进大数据发展行动纲要》,特别强调通过大数据的发展,提升创业创新活力和社会治理水平;今年10月,十八届五中全会提出,实施国家大数据战略。如今,在城市建设、金融、电子商务、公共服务等领域,大数据的应用随处可见,并正在改变着各行各业。一个大数据的时代已然来临。

机会在敲门

抓住了机遇,等于成功了一半。对于大数据而言,也是如此。

近年来,移动互联网异军突起,加快了信息化向经济社会各个领域的延伸,形成了独特的产业竞争优势。中国信息通信研究院近期发布的《2015年中国大数据发展调查报告》预测,今年中国大数据市场规模将达到115.9亿元,增速达38%;预计2016年至2018年中国大数据市场规模还将维持40%左右的高速增长。

在前不久结束的云栖大会上,阿里巴巴集团董事局马云说,在未来,计算能力将会成为一种生产能力,而数据将会成为最大的生产资料,会成为像水、电、石油一样的公共。马云认为,人类已进入DT(大数据)时代,数据取代了石油成为最核心的。

国家电网公司信息通信部主任王继业认为,不可否认,大数据会逐步为人类创造更多的价值,而对于电网企业来说,研究和应用大数据是提质增效和推动电网发展方式、公司发展方式转变的迫切要求。

公司“三集五大”体系和坚强智能电网建设,积累了体量大、类型多、价值高、速度快等典型大数据特征的运营数据,具备了推广大数据应用的基础条件。

来自国网智能电网研究院的数据显示,截至去年年底,公司管理结构化数据49.75TB,非结构化数据213TB,营销基础数据130TB,用电信息集数据达43TB,且公司信息化数据平均每天以10TB的速度增长。

“公司的生产管理和营销系统已达到几百PB级数据规模,开展大数据关键技术的研究、验证和应用,构建新型电网企业运营体系,有助于增强价值创造力和核心竞争力。”国网江苏省电力公司副总工程师王海林强调说。

国网江苏电力作为公司大数据应用的试点单位之一,在今年夏天便尝到了大数据的“甜头”。

国网江苏电力以用户信息集数据为样本,开展负荷预测工作。王海林说:“今年4月份,我们用大数据预测8月6日将迎来今年最大负荷值8440万千瓦,实际上在8月5日出现了最高负荷值8480万千瓦,预测准确率99.53%。”

作为国网公司大数据研究和实施的主要牵头部门的负责人,王继业对这样一个预测结果感到格外高兴。“预测之初我们心里也是有疑问的,毕竟没有经验可以借鉴,但最后结果这么精准,证明我们具备和掌握了大数据在负荷预测方面的理论基础以及数据分析挖掘的能力。”

同样,国网客户服务中心也感受到了大数据的威力。目前,客服中心日均处理话务请求量35万余件。为进一步提高人工服务接通率,减少客户的等待时间,客服中心依托大数据技术,建立了“实时话务展现及预测”“基于故障用户感知度的主动服务”等场景应用,工作效率显著提升。例如,通过应用实时话务展现及预测场景,人工服务接通率提升了8%左右,服务效率和效果进一步得到优化。

大数据的优势不仅仅体现在服务公司内部,在支持新能源接入、提高新能源发电功率和电力负荷预测的精度、提升新能源协调控制水平和综合能源服务能力等方面也大有作为。

王继业认为,大数据是智能电网的核心,而智能电网又是全球能源互联网发展的重要组成部分。随着大数据深入应用,将促使公司的决策从“业务驱动”转变为“数据驱动”,进一步提升管理的效率和效益,同时,充分利用这些基于电网的数据,深入分析后将挖掘许多高附加值的服务,有利于电网安全检测与控制,客户用电行为分析与客户细分,电力企业精细化运营管理等,提升公司管理效益、经济效益以及社会效益。

“不论从外部环境而言还是企业自身发展需要,大数据不是用不用的问题,而是顺势潮流,必须要用。”王继业感慨道。他说,自己从事电力通信行业20多年,行业变化如此之大,今天和过去已经不可同日而语。“数据表面看是信息,但提炼分析后就能找出相关联的规律,再借助各种工具分析规律就变成了决策。大数据的内容很丰富,可以利用的领域很多,它是一个巨大的市场,抓住了大数据就意味着占据了大市场。”

准备好了吗

纵观全球大势,大数据浪潮席卷而来。作为世界上最伟大的科技成果之一,大数据已经成为推进产业变革和重塑产业竞争力的重要力量。顺势而为、乘势而上,无疑是大数据时代下最核心的命题。

国网公司的大数据具有量大、分布广、类型多等特点,背后反映的是电网运行方式、电力生产方式以及客户消费习惯等信息,这些珍贵的数据如果能挖掘分析好也就释放了大数据真正的价值。例如,用大数据分析新增用电客户数量与地区经济发展之间的关系;从电力消费情况看宏观经济趋势等。

中国电力科学研究院技术战略研究中心高级工程师邓春宇认为,大数据好比是一个金矿,但是,想挖出金子也并非易事,“做大数据是非常考验智慧的”。

数据存储无疑是挖掘大数据“金矿”的一个重要内容。存储是大数据的核心,特别是大数据时代对应用需求复杂,对存储的要求也更高。事实上,随着智能电网建设深入,信息集点越来越多,在一些配电和数据中心的集点达到百万甚至千万级。目前这些数据大多用关系型数据库进行存储,随着智能化的不断提升,对数据库处理能力、存储空间、查询能力等方面的要求会更高。与此同时,随着公司信息化建设不断深入,业务系统产生的数据量呈爆发式增长,部分业务系统面临存储升级成本较高、系统响应速度较慢等问题。

针对这些问题,一方面公司对业务系统数据现状进行详细分析,针对数量庞大的历史数据,基于大数据平台开展历史数据归档,不断提升系统访问效率,节约系统存储成本;另一方面,针对业务系统架构进行分析,在可能引起系统访问瓶颈的地方引入大数据技术加以解决。

安全性则是挖掘电网大数据价值的另一个不容忽视的方面。电网的大数据由于涉及众多电力用户的隐私,且地域覆盖范围极广,安全问题较为突出。王继业表示,公司的大数据将按照分级管理的原则,同步规划、同步设计、同步投入运行,并根据数据的重要性以及共享程度,确定哪些是可以开放的,哪些是需要逻辑强隔离使用,从而保证在云基础上数据系统的安全性。

此外,国网能源研究院管理咨询研究所高级研究员孙艺新认为,在安全保障的情况下,利用好大数据还要以电力能源价值链延伸为主线,实现业务价值链向电网外部延伸。一方面,在电力供给、需求、客户负荷特征等数据分析基础上,注重对用户的数据挖掘与价值发现。利用大数据技术,在需求侧管理、家庭能源管理、节能服务、智能家居、95598客户服务等业务中拉近公司与用户的距离,挖掘用户行为的特点;另一方面,由支撑内部管理转向提供外部服务,将数据资产作为一项产品或服务进行变现。

王继业认为,大数据应用有需要继续深化的方面,包括怎样实现内部与内部、内部与外部之间的数据融合,减少壁垒;如何建立一支具备信息化、电力、数据分析能力的复合型人才队伍等。作为一项新生事物,大数据处于不同的发展阶段研究思考的内容也不同。“只有发现问题才有助于解决问题,引导我们走向正确的路径。”

经过反复研究探索和试点,目前,公司大数据的价值正逐渐凸显。例如,公司用大数据技术,对线损、电量等经营指标进行在线监测和分析。目前,已在部分省(自治区、直辖市)公司进行应用。另外,在今年春节前后30天时间,公司对部分省(自治区、直辖市)公司、333个地市公司共2.75亿用电客户、145亿条用电信息等数据,应用大数据分析方法,分别从用电类别、电网负荷、优质服务等角度,对春节用电情况进行了分析,形成11余万条分析结果。“通过大数据整合人口、经济、用电等数据,可以准确反应区域经济发展和用电客户的消费习惯,将极大地丰富电力增值服务内容。”孙艺新表示。

大幕已经开启

“目前,公司大数据研究和试点工作已经取得阶段性成果,但这并不意味着公司大数据的研究应用画上了圆满的句号,相反,大数据正处于进行时,未来我们要做的工作还有很多。”王继业强调。

9月14日,公司发布信息通信新技术推动智能电网和“一强三优”现代公司创新发展行动,强调要加快构建各专业共享的企业级大数据平台,积极开展大数据应用场景设计,用好大数据,充分发挥数据价值。

立足公司的发展战略,未来公司大数据的运用前景光明。“当前,中央提出实施国家大数据战略,公司又正处于构建全球能源互联网的新征程中,信息化的任务繁重。利用好大数据,挖掘大数据的价值,推进大数据在公司系统的广泛应用,是构建全球能源互联网的重要保证。”王继业说。

目前,公司已经建成了覆盖总部和省公司统一的大数据平台。随着国网山东、上海、江苏、浙江、安徽、福建、四川电力和客服中心等试点单位的企业级大数据平台上线试运行。电网业务数据在总量和种类上都已初具规模,接下来的关键就是要做好大数据的各项分析。

当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。

随着信息化建设推进以及新能源发展,下阶段各专业会涌现更多大数据应用需求,包括公司大数据和其他行业数据的关联性、与经济社会发展之间的关系等。公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,从而实现立足数据提供运维服务,创造数据增值价值,进一步推动电网发展方式和公司发展方式转变,为公司构建全球能源互联网,推动实施国家大数据战略,提供更有力、更长远的支撑。

以上是小编为大家分享的关于国家电网大数据应用 增强企业核心竞争力的相关内容,更多信息可以关注环球青藤分享更多干货

比如 关于个人知识石油专业方面的术语 概括下石油知识什么的 最好是成品 给点硬磕!

道·琼斯借数,即道·琼斯股票价格平均指数,是世界上最有影响、使用最广的股价指数。它以在纽约证券挂牌上市的一部分有代表性的公司股票作为编制对象,由四种股价平均指数构成,分别是:①以30家著名的工业公司股票为编制对象的道·琼斯工业股价平均指数;②以20家著名的交通运输业公司股票为编制对象的道·琼斯运输业股价平均指数;③以6家著名的公用事业公司股票为编制对象的道·琼斯公用事业股价平均指数;④以上述三种股价平均指数所涉及的65家公司股票为编制对象的道·琼斯股价综合平均指数。在四种道·琼斯股价指数中,以道·琼斯工业股价平均指数最为著名,它被大众传媒广泛地报道,并作为道·琼斯指数的代表加以引用。道·琼斯指数由美国报业集团——道·琼斯公司负责编制并发布,登载在其属下的《华尔街日报》上。历史上第一次公布道·琼斯指数是在1884年7月3日,当时的指数样本包括11种股票,由道·琼斯公司的创始人之一、《华尔街日报》首任编辑查尔斯·亨利·道(Charles Henry Dow l851-1902年)编制。1928年10月1日起其样本股增加到30种并保持至今,但作为样本股的公司已经历过多次调整。道·琼斯指数是算术平均股价指数。

故事:

“道琼斯”到底是什么?

在这一百多年里,西方的每家报纸和广播,每天都提到谁的名字?答案是一

个:道琼斯。那么——

本刊记者

在我们看到的复杂图像里,数以万亿计的股票资金在虚拟的电子空间里流通

。然而,这个庞大的令人瞩目的金融世界每天都以一个简单而无情的数字来结束

当天的交易:道琼斯工业平均价格指数(简称道琼斯指数)。那个神秘的数字的每

一个轻化,给越来越多的人们带来狂喜或恐惧。它是一个代号,不仅广泛地

渗入美国金融文化中,而且遍布世界每一个金融中心。

这是查尔斯·道用手点燃的金融火箭。没有人能够理解道琼斯公司背后的这

个人,以及这个公司的过去和未来。

道琼斯是两个人,是一个公司,是一个平均指数

查尔斯·亨利·道,1851年11月6日出生在康乃狄格州斯特灵的一个农场里

。6岁时,他的父亲就去世了。在以后的12年里,他在自家的农场上艰苦地劳动

着。除此之外,他在不同时期还从事过20种不同的额外工作以养活他的母亲。虽

然他只上过小学,但是当一个记者是他最大的梦想。因此他加入了斯普灵菲尔德

的《共和党人报》。后来查尔斯·道又从麻省来到罗得岛的普罗文顿斯,在《普

罗文顿斯日报》工作。

爱德华·戴维斯·琼斯,脾气暴臊,但是却拥有闪电一样的思维。琼斯毕业

于布朗大学,道非常尊敬他受过的大学教育。他们很快便成为了朋友。

在曼哈顿,道和爱德华·琼斯走到了一起。

内战后,美国商业迅速进入工业革命时期——一个股份有限公司的新时代。

道成长于这个时代,并目睹了企业生产产品在地区内销售的现状被有实力的追求

巨大商业利润的工业资本家们控制,组成了庞大的联合企业以发掘和垄断国内市

场。他们也把企业的股份卖给公众以寻找传说中的黄金国。可是股票价格经常被

华尔街的联合投资者们控制、垄断。这些投机商们操纵股票价格上涨,然后再大

量抛售它们,使价格暴跌,从中赚取巨额利润,而公众都遭受灭顶之灾。道看到

急需一个组织,把更好的、诚实的财务报告带到这个在混乱中成长的金融宇宙中

十九世纪八十年代后期,在工业巨头的操纵下,庞大的、具有垄断性质的“

托拉斯”在钢铁、制铜、制铝,煤炭、玻璃、糖酒等行业中产生。道预见到国内

经济和国内市场的一种抽象的概念,并且预见到一种可以衡量那些工业巨头正在

做什么的方法。道和琼斯成立他们自己公司的时间来到了。

道琼斯公司成立于1882年11月,查尔斯·密尔福特·伯格斯特里瑟作为第三

个伙伴加入进来,但是他们不想把公司的名字改为:“道·琼斯·伯格斯特里瑟

”。他们认为那有点长。因此,伯格斯特里瑟失去了名垂青史的机会。在华尔街

15号一个狭小的办公室里,公司只有一台打字机和一部电话。

1882年,道琼斯出版了一份只有两页的晚报,他们把信息手写在劣质的纸张

上,并复抄了24份,定名为《顾客晚报》。《顾客晚报》迅速取得了成功。华尔

街认识到道——这个安静的,总是记下看到的所有事情的人——在用毫不夸张的

语言发布着极为精确的信息。

1884年7月3日,道推出了一项包含十一种股票的指数,以追踪市场。其中包

括九家铁路公司和两家汽轮公司的平均价格。

1889年7月8日,《华尔街日报》诞生了。一百年后,道提出的平均指数以及

登载它的《华尔街日报》不但影响到整个华尔街,而且还影响了整个世界。

他把留有他的名字的一份遗产留给了华尔街和美国,就是那份报纸和它的基

本指数

在十九世纪末的二十年里,新诞生的《华尔街日报》跟美国这个国家一样发

展非常迅速。在布拉德街26号,道琼斯公司也有了一个比以前大得多的办公室。

报纸的核心内容一直都是查尔斯·道的具有开创性的指数。新的十二种股票平均

指数也于1896年5月26日首次在《华尔街日报》上发表。查尔斯·道是分析报告

之父。他是第一个真正观看股票交易并且看到其内在因素的人。在他之前,每个

人都认为两天的股票交易之间是绝对独立的,没有任何联系的。道承诺日报的目

标是提供信息而不是发表观点。

把道琼斯公司带入一个新世纪的机会降临在位于布拉德街44号的公司新办公

室里。1902年3月14日,公司以13万美元的价格卖给波士顿和费城新闻出版社的

拥有者克拉伦斯·沃克尔·拜伦。他的妻子杰茜,成为董事会的并负责公司

的日常管理。

1902年,51岁的查尔斯·享利·道在他布鲁吉村的家中平静地离开了人世,

但是,他把留有他的名字的一份遗产留给了华尔街和美国,就是那份报纸和它的

基本指数。

对于金融世界,特别是投资股票的人们而言,道琼斯指数和《华尔街日报》

是他们的圣经。当新世纪开始的时候,拜伦家庭证实了他们可以把公司和查尔斯

·道的指数带入未来。道琼斯指数记录了一个无可比拟的国内市场健康发展的重

要时期。

道琼斯指数总是受诸如1906年的旧金山大地震和1907年的经济恐慌这类灾难

件影响。当时,道琼斯指数在18个月内从103点跌到53点。8家信誉良好的纽

约银行和“托拉斯”在4天之内相继破产。

1917年美国介入第一次世界大战,是对道琼斯指数的第一次考验。此前,忧

心忡忡的美国于1914年7月30日关闭了纽约股票。但是,无法自控的

贸易商们转移到户外,在被称做“马路交易”的地方当街交易。股票很快

重新营业,并且创造了一个先例,即无论什么情况发生,永远开放。

整个二十年代,是查尔斯·道指数的辉煌时期,到1928年它已增加到30种股

票。当时“定金交易”可以使人花一美元买到价值十美元的股票。这是第一次包

括电梯工、接线员、报童等所有人,都跟金融巨头一样玩起了股票。人们为有这

么多挣钱的机会而疯狂,但他们没有意识到市场涨得越高,下跌的危险就越大。

乔·肯尼迪(未来的的父亲)对自己说,如果连擦鞋匠都在买股票,我

就不想再呆在里面了。他提早撤出资金,这为他的未来奠定了基础。

1929年的经济大崩盘开始于10月24日星期四的抛售狂潮,结束于10月29日的

彻底崩溃。人们永远也不会忘记那一个“黑色星期二”,10年的发展在几天之内

毁于一旦,道琼斯指数下跌了24%,几十亿美元一下子全消失了。一个煤炭公司

的老板看着正在下跌的指示板,倒地死在了他的经纪人办公室里。一些开船出海

游玩的富人们回来后发现,他们已变成了身无分文的贫民了。如果你持有道琼斯

的股票,他们在3年里从381美元跌到41美元,仅相当于原价值的11%。而那些定

金交易的人们则倾家荡产。

三十年代是一个无限痛苦的年代:每一次试图使道琼斯回升的努力都引发了

更可怕的结果。那些因提前撤出资金而毫发不损的人旁观事态的发展。他们说:

“嘿!是时候了。”可能是1931年左右,他们全都挤进市场,可市场再次崩溃。

人们称其为“富人的萧条期”。

很多人觉得查尔斯·道也不可能恢复元气了。股市是那么扣人心弦又不可捉

摸,现在,终于有一个可以抓握的东西了。你不需要知道许多枝节,只要听到那

一组数字,对经济就有一个大致的判断。道琼斯指数就像天气预报,报告着股市

的阴晴。

阿道夫·把美国从萧条中解救出来

在萧条的三十年代,罗斯福总统认识到必须施实一些必要的控制,以避免市

场再次遭到类似的巨大的毁灭性破坏。所以罗斯福成立了证券交易委员会。并且

,他选择了乔·肯尼迪担任。

银行不能既是银行又是投资公司,操纵股票是违法的。控股公司不再是投机

股票的工具。定金交易的规定更加严格。但是谁来调治重创的道琼斯,使其恢复

健康呢?你可能不相信: 是二十世纪最丑恶的人阿道夫·把美国从萧条中

解救出来。

迅速膨胀的法西斯战争威胁给美国和道琼斯带来了利润。美投入几百亿

美元以重建陈旧的国家战争机器,突然之间美国的腰包又鼓了起来。当战争结束

时,道琼斯又恢复了元气。

五十年代,德威·艾森豪威尔执政,没有通货膨胀。

1954年,道琼斯指数最终反弹到381点,甚至达到29年以前的最高点,但这

是经历了第二次世界大战和花费了15年的时间来抹去这段记忆,才做到的。

正像查尔斯·道预言那样,涌现出一个被金融市场和生产同时驾驭的国家。

新的MBA在努力回避一些古老的致富行业,诸如广告业、医生、工程师,转而指

向华尔街。他们的目标是经纪业、投资银行、债券交易和共同基金。每个搞金融

的都是英雄。

人们总是说,“时代不同了”,不幸的是,历史常常重演

整个六十年代道琼斯的前途阴云密布,虽然用控制物价及工资的方法

来解决高额越战花费以及巨大的社会问题带来的通货膨胀。但是美国的工业仍继

续增长,12年,在查尔斯·道引入道琼斯平均指数后的第72个年头,该指数终

于达到了1000点。

在13年与14年之间,世界石油出口组织把原本被他们所控制的石油的价

格提高了4倍,使原本完全依赖有限廉价原油的某些美国工厂、汽车产业、家庭

陷入了经济困境。道琼斯就像温度计一样,第一个预测到了这场经济风暴。接着

,这场风暴使人们失去了对市场的信心。

股票竟跌落了85%至90%。这在70年代简直是糟糕透了。但是美国及道琼斯的

苦难远不止这些。通货膨胀几乎到了无法控制的地步,美国人开始对股票这种投

资方式失去信心。

银行利息虽猛涨20%,但道琼斯指数好像是最后上涨的一项。买股票被视为

最不明智的做法。

八十年代中期,罗纳德·里根执政期间,利率的降低使市场恢复了生机,道

琼斯呈现上升趋势。但是这却引发了人们无节制的欲望,导致了可怕的负面影响

。金融重力论被彻底否定,合并狂潮开始了,那些百年老公司的名字消失了。一

点点关于合并的谣传都会导致道琼斯指数的上扬;一条微量的信息都能价值百万

。内部交易繁琐起来。像伊万·布斯基那种已经拥有他们梦想的权力和金钱的人

,还是通过非法构造的内部网络赚取了巨大的利润。支付经纪人固定提成的时代

结束了。与此同时,每个人都能在道琼斯黄金大道上驰骋的时代来临了,共同基

金以星星之火迅速燎原。

许多人对从电视上录下来的节目非常了解,但是对影响到自己退休后生活的

投资却知之甚少

计算机的时代迅猛到来,它以数亿千兆的速度完成交易,并把信息传送到世

界各地。人们为计算机设置了一种永无失误的程序以确保意外情况发生时市场不

会受到影响。

可是这次不是某个部分,而是整个系统都出现了错误。1987年10月20日,星

期一,道琼斯工业平均指数下跌至508点。装了特殊程序的计算机不停地在卖,

任何试图使其稳定下来的努力都失败了。黑色星期一,是最令人难以置信的一天

。因为那儿没有市场,被称作“自由下跌”。自由下跌,简单地说就是价格一直

下跌,没有任何买家。仅仅一天道琼斯丧失其价值的23%,数百亿美元消失了。

1987年,所有的人都开始卖,卖掉所有能换成现金的东西。别分析它,也别考虑

价值。当星期一道琼斯指数猛跌到508点后,担心发生世界性金融危机的人们只

需等到星期三开盘,便会知道道琼斯指数已经开始强劲反弹。它曾经用了25年的

时间从1929年的崩盘中恢复过来,而这一次却只用了两年半。

结果是起用了一种所谓的“断路保险”,当道琼斯上涨或下跌一定的值时,

它将有效地切断计算机交易程序。证券交易委员会则有了新的权力去抓捕那些投

机分子。金融界巨头麦克尔·米根和伊万·布基斯因为非法操作而入狱。米根证

券公司,金融界的“泰坦尼克号”,因为非法交易,被判处6亿美元罚金,道琼

斯似乎恢复了平静,但好景不长。

一场血腥、快速的高科技战争在1991年1月16日打响了,道琼斯指数在战争

期间下跌。战争一结束,它就以历史上罕见的速度飙升。道琼斯用了76年才达到

1000点,又用14年达到2000点之后,只用了8年,就达到了4000点。5000点和6000

点来的就更快了。新的想法、新的诱惑层出不穷。

股市的运动只有两个方向:向上或向下,它用两种动物的形象表示:牛市或

熊市。在这场变幻莫测而又引人入胜的游戏中间,赢家和输家都不是永恒的,上

市公司也不永恒,看起来,只有道琼斯是永恒的。

近两个世纪前,那位安静的、永远充满好奇的查尔斯·道在《华尔街日报》

上发表了自己算出来的工业指数。他会对今天的股市作何感想呢?《华尔街日报

》定期地从1.1万家公司中提取30家作为道琼斯指数的参考,而这样的基数仅代

表着数以兆亿的投资者中的20%。

储集层特殊分析技术在油气勘探中的应用

石油知识———石油地质名词解释

油田------由单一构造控制下的同一面积范围内的一组油藏的组合。

气田------单一构造控制几个或十几个汽藏的总和。

石油------具有不同结构的碳氢化合物的混和物为主要成份的一种褐色。暗绿色或黑色液体。

天燃气----以碳氢化合物为主的各种汽体组成的可燃混和气体。

生油层----在古代曾经生成过石油的岩层。

油气运移--在压力差和浓度差存在的条件下,石油和天然气在地壳内任意移动的过程。

垂直运移--即油气运移的方向与地层层面近于垂直的上下移动。

测向运移---即油气运移的方向与地层层面近于平行的横向移动。

储集层-----能使石油和天然气在其孔隙和裂缝中流动,聚集和储存的岩层。

含油层-----含有油气的储集层。

圈闭----凡是能够阻止石油和天然气在储集层中流动并将其聚集起来的场所。

盖层----紧邻储集层上下阻止油气扩散的不渗透岩层。

隔层----夹在两个相邻储集层之间阻隔二者串通的不渗透岩层。

遮挡----阻止油气运移的条件或物体。

含油面积----由含油内边界所圈闭的面积。

油水边界----石油和水的接触边界。

储油面积-----储油构造中,含油边界以内的平面面积。

工业油气藏-----在目前枝术条件下,有开价值的油气藏。

构造油气藏-----由与构造运动使岩层发生变形和移位而形成的圈闭。

地层油气藏-----由地层因素造成的遮挡条件的圈闭。

岩性油气藏-----由于储集层岩性改变而造成圈闭。

储油构造-----凡是能够聚集油,气的地质构造。

地质构造-----地壳中的岩层地壳运动的作用发生变形与变位而遗留下来的形态。

沉积相----指在一定的沉积环境中形成的沉积特征的总和。

沉积环境-----指岩石在沉积和成岩过程中所处的自然地理条件、气候状况、生物发育状况、沉积介质的

物理的化学性质和地球化学要条件。

单纯介质-----只存在一种孔隙结构的介质称为单纯介质。如孔隙介质、裂缝介质等。

多重介质----同时存在两种或两种以上孔隙结构的介质称为多重介质。

均质油藏-----整个油藏具有相同的性质。

非均质油藏-----具有不同性质的油藏,包括双重介质油藏;裂缝西个油藏;多层油藏

弹性趋动-----油井开井后压力下降,油层中液体会发生弹性膨账,体积增大,而把原油推向井底。

水压趋动----靠油藏边水。底水或注入水的压力作用把原油推向井底。

地质储量----在地层原始条件下,具有产油气能力的储层中所储原油总量。

可储量----在目前工艺和经济条件下,能从储油层中出的油量。

剩余可储量----油田投入开发后,可储量与累计出量之差。

收率-----油田出的油量与地质储量的百分比。

最终收率----油田开发解束累计油量与地质储量的百分比。

出程度---油田在某时间的累计油量与地质储量的比值。

油速度----年出油量与地质储量之比。

原油密度----指在标准条件下(20度,0.1MPa)每立方米原油质量。

原油相对密度----指在地面标准条件(20度,0.1MPa)下原油密度与4度纯水密度的比值。

原油凝固点----在一定条件下失去了流动的最高温度。

原油粘度----原油流动时,分子间相互产生的摩檫阻力。

原油体积系数----地层条件下单位体积原油与地面标准条件下脱汽体积比值。

原油压缩系数----单位体积地层原油在压力改变0。1兆帕时的体积的变化率。

溶解系数----在一定温度下压力每争加0。1兆帕时单位体积原油中溶解天燃汽的多少。

孔隙度----岩石中孔隙的体积与岩石总体积之比。

绝对孔隙度----岩石中全部孔隙的体积与岩石总体积之比。

有效孔隙度-----岩石中互相连通的孔隙的体积与岩石总体积之比。

含油饱和度-----在油层中,原油所占的孔隙的体积与岩石总孔隙体积之比。

含水饱和度-----在油层中,水所占的孔隙的体积与岩石孔隙体积之比。

稳定渗流-----在渗流过程中,如果各运动要素与(如压力及流速)时间无关,称为稳定。

不稳定渗流-----在渗流过程中,若各运动要素与时间有关,则为不稳定渗流。

等压线----地层中压力相等的各个点的连接线称为等压线。

流线-----与等压线正交的线称为流线。

流场图----由一组等压线和一组流线构成的图形为流场图。

单相流动-----只有一种流体的流动叫单相流动。

多相流动------两种或两种以上的流体同时流动叫两相或多相流动。

渗透率----在一定压差下,岩石允许液体通过的能力称渗透性,渗透率的大小用渗透率表示。

绝对渗透率----用空汽测定的油层渗透率。

有效渗透率----用二种以上流体通过岩石时,所测出的某一相流体的渗透率。

相对渗透率----有效渗透率与绝对渗透率的比值。

水包油----细小的油滴在水介质中存在的形式。

油包水----细小的油滴在水介质中存在的形式。

供油半径-----把油井供油面积转换成圆形面积后的圆形半径。

地层系数----地层有效厚度与有效渗透率的乘积。

流动系数----地层系数与地下原油粘度的比值,表示流体在岩层中流动的难易程度。

导压系数-----表示油层传递压力性能好坏的参数。

续流-----油井地面关井后,井下仍有油流从地层中继续流入井眼,这种现象称为续流。

井筒储存效应-----油井刚关井时所出现的现象。

折算半径----把实际井的各个因素(不完善或超完善)对压力的影响,变成一个由于某井径引起对压力

的等效作用,这个等效半径称为折算半径。

完善程度-----指理想完善井的工作压差与实际井工作压差之比。

完善指数-----油井实际工作压差与压力恢复取限制线段斜率之比。

表皮效应-----实际井的各个非完善因素造成的附加压力同油层渗透阻力之比。它是当原油从油层流入井

筒时,产生一个压力降的现象。

井间干扰-----井与井之间产生的动态影响现象。

油指数----油井生产压差每增大0.1兆帕,所增加的油量。

栅状图-------表示油层各个方向的岩性,岩相变化情况,层间;井间连通情况。

主力油层-----油层厚度大,渗透率高,的好油层。

接替层-----在油田稳产中起接替作用的油层。

见水层位-----注入水沿连通层向油井推进,使油井某一层含水。

来水方向-----油井受某方向注水井注水效果而使动态变化叫来水方向。

扫油面积系数-----指一个开井组,已被水淹的油层面积与所控制面积的比值。

注平衡----注入油层水量与出油量的地积相等。

注比-----油田注入剂(水,气)地积与出液量(油,气,水)的地积之比。

吸水指数----注水井在单位注水压差下的日注水量。

注水强度----注水井在单位有效厚度油层的日注水量。

压力平衡-----注水井所补给油层的压力与出油。水所削耗的压力相等。

地下亏空----注入水的体积小于出液量的地积。

含水率----含水油井,日产水量与日产液水量的百分比。

井别----根据钻井目的和开发的要求,把井分为不同的类别。

探井----经过地球物理堪探证实有希望的地质构造为了探明地下情况,寻找油。汽田而钻的井。

资料井-----为了编制油田开发方案所需要的资料而钻的取心井。

生产井----用来油的井。

注水井----用来向油层内注水的井。

观察井----专门用来观察油田地下动态的井。

检查井----为了检查油层开发效果而钻的井。

更新井-----为了注系统完善,需要打新井,这些新钻的井叫更新井。

调整井----在原有井网基础上,为改善油田开发效果,而补充钻的一些另散井或成批成排的加密井。

正注井---从油管向地层注水的井称为正注井。

反注井---从套管向地层注水的井称为反注井。

井网----油气水井在油田上的排列和分布。

精度----反映测试仪器;仪表和计量器具误差大小的程度。

误差----测量值与真实值之差。

油补距----从油管挂平面到钻盘补心的距离。

套补距----从套管最末一根节箍上平面到钻盘补心的距离。

静水柱压力-----从井口到油层中部的水柱压力。

原始地层压力-----油田还没有投入开发,在探井中测得的油层中部压力。

目前地层压力-----油田投入开发以后,某一时期测得的油层中部压力。

油压----原油从井底流到井口的剩余压力。

套压----油套环形空间内的压缩汽体压力。

流压----油井正常生产时测得的油层中部压力。

静压----油井投入生产以后,利用短期关井,待井底压力恢复稳定时,测得的油层中部压力。

饱和压力----溶解在原油中的天燃汽刚刚开始分离时的压力。

基准面压力----在油田开发过程中,为了正确地对比井与井之间的力高低,把压力折算到同一海拔深度

进行比较,相同海拔深度压力称基准面压力。

压力系数----指原始地层压力与静水柱压力的比值。

总压差-----目前地层压力与原始地层压力的差值。

油压差------目前地层压力与流压的差值。

流饱压差----指流压与饱和压力的差值。

地饱压差----指目前地层压力与饱和压力的差值。

注水压差-----指注水井井底流压与静压的差值。

流压梯度----油井正常生产时每米液柱所产生的压力。

静压梯度-----油井关井以后,井底压力恢复稳定时,每米液柱所产生的压力。

机戒油-----用各种机戒将油到地面上来的方法。

抽油机----是代动井下抽油泵工作的地面机戒。

抽油杆----是抽油机井的细长杆件,它上接总杆,下接抽油泵起传递动力的作用。

光杆----是钢质圆形杆件,它上连抽油机下连抽油杆,起传递动力的作用。

悬绳器----是驴头和光杆的连接装置。

抽油泵-----由抽油机带动把井内原油举升到地面的井下装置。

套管----用水泥固定在井壁上的钢管,起封隔油汽水层。加固油层。井壁的作用。

油管----下入套管中间的无缝钢管。

静液面----抽油机关井后,环空液面缓升到一定位置稳定下来的液面。

动液面----抽油机正常生产时,井口至液面的距离。

泵效----抽油泵的实际排量与理论排量的比值。

沉没度-----泵深与动液面的差值。

冲程----驴头往复运动,带动光杆运动的高点和低点的距离。

冲数----抽油泵活塞在工作筒内每分钟往复运动的次数。

充满系数----抽油泵活塞完成一次冲程时泵内进入油的体积和活塞让出的体积的比。

气锁-----深当深井泵内进入气体后,使泵抽不出油的现象。

示功图----示功仪在抽油机一个抽吸周期内测取的封闭曲线。

压裂-----利用水力作用,使油层形成裂缝的方法。

合层压裂----指对日口井中的生产层组的各个小层同时压裂。

单层选压-----是选择一个层组中的某一小层或某一段进行压裂。

油层破裂压力-----指油层破裂时的压力或油层刚开始吸水时的压力。

污染井---污染系数大于零的油层为污染井。

完善井---污染系数等于零的油层为完善井。

超完善井---污染系数小于零的油层为超完善井。

酸化井---污染系数小于-3的油层为酸化井。

吸水启动压力----油层刚开始吸水时的压力称吸水启动压力。

驱动方式----驱使原油流向井底的动力来源方式称驱动方式。

注水强度-----单位有效厚度的日注水量称注水强度。

含水率-----日产水量与日产液量的比值称含水率。

串槽--各层段沿油井套管与水泥环或水泥环与井壁之间的串通。

完钻井深----完钻井底至方补心顶面的距离。

水泥返高----套管和井壁之间水泥上升的高度。

人工井底----固井完成留在套管最下部的一段水泥的顶面。

水泥塞----从完钻井底至人工井底的水泥柱。

流度-----地层隙数与地下原油粘度的比值叫流度。

机诫油----利用各种机诫将油到地面上来的方法叫机诫油。

表皮因子-----表皮效应性质的严重程度称表皮因子。

油层中部深度----油水井井口至射孔井段(顶部至底部)1/2处。

供油半径---在多井生产时,油水井在地下控制一定范围的含油面积含油面积的半经称为供油半经。

石油知识———油气勘探知识

石油成因的学说

主要有无机成因和有机成因学说。多数学者认为石油主要是有机成因的。

生油岩

按照有机成因学说,大量的微体生物遗骸与泥砂或碳酸质沉淀物埋藏在地下,经过长时期的物理化学作用,形成富含有机质的岩石,其中的生物遗骸转化为石油。这种岩石称为生油岩。

储集层

是指能够储存和渗滤油气的岩层,它必须具有储存空间 (孔隙性 )和储存空间一定的连通性 (渗透性 )。储集层中可以阻止油气向前继续运移,并在其中贮存聚集起来的一种场所,称为圈闭或储油气圈闭。

油气藏

圈闭内储集了相当多的油气,就称为油气藏。

油气田

在地质意义上,油气田是一定 (连续 )的产油面积内各油气藏的总称。该产油面积是受单一的或多种的地质因素控制的地质单位。

油气聚集带

油气聚集带是油气聚集条件相似的、位置邻近的一系列油气藏或油气田的总和。它具有明确的地质边界。区,形成年产原油 430万吨和天然气 3.8亿立方米生产能力。

含油气盆地

在地质历史上某一时期的沉降区,接受同一时期的沉积物,有统一边界,其中可形成并储集油气的地质单元,称做含油气盆地。

生油门限

生油岩在地质历史中随着埋藏在地下的深度加大,受到的压力和温度增加,其中的有机质逐步转变成油或气。当生油岩的埋藏到达大量生成石油的深度 (也是与深度相应温度 )时,叫进入生油门限。

油气地质储量及其分级

油气地质储量就是油气在地下油藏或油田中的蕴藏量,油以重量 (吨 )为计量单位,气以体积 (立方米 )为计量单位。地质储量按控制程度及精确性由低到高分为预测储量、控制储量和探明储量。地处豫西南的南阳盆地,矿区横跨南阳、驻马店、平顶山三地市,分布在新野、唐河等 8县境内。已累计找到 14个油田,探明石油地质储量 1.7亿吨及含油面积 117.9平方公里。 1995年年产原油 192万吨。

油 (气 )按储量可分

按最终可储量值可分成 4种:特大油 (气 )田:石油最终可储量大于 7亿吨 (50亿桶 )的油田。天然气可按 1137米 3气 =1吨原油折算。大型油 (气 )田:石油最终可储量 0.7~ 7亿吨 (5~ 50亿桶 )的油 (气 )田。中型油 (气 )田:石油最终可储量 710~ 7100万吨 (0.5~ 5亿桶 )的油 (气 )田。小型油 (气 )田:石油最终可储量小于 710万吨 (5000万桶 )的油 (气 )田。

按圈闭类型划分油气藏

有构造油气藏、地层油气藏和岩性油气藏三大类。后两类比较难于发现,勘探难度大,称为隐蔽圈闭油气藏。

岩石分类

岩石分沉积岩、火成岩及变质岩三大类。多数油、气储存于沉积岩中,火成岩及变质岩中也可以储存油、气。常见的沉积岩有砂岩、砾岩、泥岩、页岩、石灰岩及白云岩等。

地层及其单位

岩石 (特别是沉积岩 )常常是由老到新呈现为层状排列的,因而把这些排列在一起的岩石统称为地层。地层的单位有大有小,因其成因和时代及工作需要可把排列在一起的岩石划分为不同的地层单位和系统。

地层时代划分

地层形成的年代有老有新,通常把地层的时代由老至新划分为太古代、元古代、古生代、中生代、新生代等,与 “ 代 ” 相对应的地层单位则称为 “ 界 ” ,如太古界、 …… 新生界等。 “ 代 ” 可以细分为 “ 纪 ” ,如中生代分为三叠纪、侏罗纪、白垩纪,新生代分为第三纪、第四纪等,与 “ 纪 ” 相对应的地层单位称为 “ 系 ” ,如侏罗系、第三系等。 “ 纪 ” 和 “ 系 ” 还可以再详细划分,如油、气勘探开发工作中常用到的 “××× 组 ” 和 “××× 层 ” ,就是更小的地层单位。

三维地震勘探

由于地震勘探的测线只提供了二维的信息,要了解一定面积内的地下情况需要把各条测线的地震剖面进行对比,找出相关的信息推断测线之间的地下情况,才能形成整体概念,这就可能产生相当大的人为误差。三维地震是在一定的面积上用地下地震信息的方法,它可从三维空间 (立体的 )了解地下地质构造情况。这种方法可以提供剖面的、平面的,立体的地下地质图构造图象,大大地提高了地震勘探的精确度,对地下地质构造复杂多变的地区特别有效。

高凝油

通常把凝固点在 40℃ 以上,含蜡量高的原油叫高凝油。辽宁省的沈阳油田是我国最大的高凝油田,其原油的最高凝固点达 67℃ 。

稠油

稠油是沥青质和胶质含量较高、粘度较大的原油。通常把地面密度大于 0.943、地下粘度大于 50厘泊的原油叫稠油。因为稠油的密度大,也叫做重油。我国第一个年产上百万吨的稠油油田是辽宁省高升油田。

天然气

地下出的可燃气体称做天然气。它是石蜡族低分子饱和烃气体和少量非烃气体的混合物。天然气按成因一般分为三类:与石油共生的叫油型气 (石油伴生气 );与煤共生的叫煤成气 (煤型气 );有机质被细菌分解发酵生成的叫沼气。天然气主要成分是甲烷。

干气和湿气

油田的伴生天然气,经过脱水、净化和轻烃回收工艺,提取出液化气和轻质油以后,主要成分是甲烷的处理天然气叫干气。一般来说,天然气中甲烷含量在 90%以上的叫干气。甲烷含量低于 90%,而乙烷、丙烷等烷烃的含量在 10%以上的叫湿气。

天然气与液化石油气区别

天然气是指蕴藏在地层内的可燃性气体,主要是低分子烷烃的混合物,可分为干气天然气和湿天然气两种。干气成分主要是甲烷,湿天然气除含大量甲烷外,还含有较多的乙烷、丙烷和丁烷等。液化石油气是指在炼油厂生产,特别是催化裂化、热裂化、焦化时所产生的气体,经压缩、分离而得到的混合烃,主要成分是丙烷、丙烯、丁烷、丁烯等。

沉积相

指在一定的沉积环境下形成的岩石组合。在沉积环境中起决定作用的是自然地理条件的不同,一般把沉积相分为陆相、海相和海陆过渡相。

油气盆地数值模拟技术

油气盆地数值模拟技术主要是从盆地石油地质成因机制出发,将油气的生成、运移、聚集合为一体,充分研究各种地质参数,建立数字化动态模型,并形成一维~三维的计算机软件,全方位的描述一个盆地的油气形成及地质演化过程。

石油勘探

所谓石油勘探,就是为了寻找和查明油气,而利用各种勘探手段了解地下的地质状况,认识生油、储油、油气运移、聚集、保存等条件,综合评价含油气远景,确定油气聚集的有利地区,找到储油气的圈闭,并探明油气田面积,搞清油气层情况和产出能力的过程。

地震勘探

地震勘探是地球物理勘探中一种最重要的的方法。它的原理是由人工制造强烈的震动 (一般是在地下不深处的爆炸 )所引起的弹性波在岩石中传播时,当遇着岩层的分界面,便产生反射波或折射波,在它返回地面时用高度灵敏的仪器记录下来,根据波的传播路线和时间,确定发生反射波或折射波的岩层界面的埋藏深度和形状,认识地下地质构造,以寻找油气圈闭。

多次覆盖

多次覆盖是指用一定的观测系统获得对地下每个反射点多次重复观测的集地震波讯号的方法。它可以消除一些局部的干扰,有利于求得较准确的讯号。

地震剖面

地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就象从地面向下切了一刀,在二维空间 (长度和深度方向 )上显示了地下的地质构造情况。

地震勘探的数据处理

把记录集到地震信息的磁带上的大量数据输入到专用的电子计算机中,按照不同的要求用一系列功能不同的程序进行处理运算,把数据进行归类编排,突出有效的,除去无效和错误的,最后把经过各种处理的数据以波形、线形的形式绘制在胶片上或静电纸上,形成一张张地震剖面。这个过程就称做数据处理。

地震勘探中所说的速度

地震勘探所说的速度即是地震波的传播速度。常用的是平均速度,它是地震波垂直穿过某一岩层界面以上各地层的总厚度与各层传播时间总和之比,可以用来把地震记录的时间转换为深度 (距离 )。此外,还有层速度、均方根速度、叠加速度等。

水平叠加剖面

在用多次覆盖方法集的地震资料处理过程中,把共同反射点的许多道的记录经动校正以后叠加起来,以提高讯噪比 (高讯号与噪声的比例 ),压制干扰,用这种方法处理所得到的地震剖面叫水平叠加剖面。

叠加偏移剖面

在地震资料处理中,在水平叠加的基础上,实现反射层的空间自动归位,用这种方法处理得到的地震剖面,就是叠加偏移剖面。

垂直地震剖面

地震源放置于地面,接收的检波器置于深井中,地面激发震动后由不同深度的检波器接收地震波讯号,这种方法获得的地震波讯号是单程的,而不是反射或折射回来的,对分析和认识地下地质构造情况更为准确。

地震资料解释

地震资料解释是把经过处理的地震信息变成地质成果的过程,包括运用波动理论和地质知识,综合地质、钻井、测井等各项资料,做出构造解释、地层解释,岩性和烃类检测解释及综合解释,绘出有关的成果图件,对测区作出含油气评价,提出钻井位置等。

地震地层学

地震地层学是把地层学和沉积学特别是岩性、岩相的研究成果,运用到地震解释工作中,把地震资料中蕴藏的地层和沉积特征的信息充分利用起来,做出系统解释的方法。

地震层序

地震层序是沉积层序在地震剖面图上的反映。在地震剖面图上找出两个相邻的反映地层不整合接触的界面,则两个界面之间的地层叫做一个地震层序。但因为受不整合面影响,其间的地层即地震层序是不完整的,沿不整合面追踪到地层变成整合的之后,这个地震层序才是完整的。

层序地层学

层序地层学是在地震地层学基础上进一步发展的新学科,是综合地质、地震资料,详细划分并确立地下地层的层序,从而研究其构造活动、沉积环境的变化、岩相分布等。

地震相

地震相是指沉积物 (岩层 )在地震剖面图上所反映的主要特征的总和。地震相标志分为:内部反射结构;反射连续性;反射振幅;反射频率;外部几何形态及其伴生关系。

合成地震记录

合成地震记录是用声波测井或垂直地震剖面资料经过人工合成转换成的地震记录 (地震道 )。它是地震模型技术中应用非常广泛的一种,也是层位标定、油藏描述等工作的基础,是把地质模型转化为地震信息的中间媒介。

油气检测技术

油气检测技术是一种综合利用烃类存在的多种地震特性参数 (速度、频率、振幅、相位等 )来确定油气富集带的方法。这类技术有许多种,目前常用的有亮点技术和 AVO技术等。

储集层预测技术

储集层预测技术是综合应用地震、地质、钻井、测井等各项资料对地下储集层的分布、厚度及岩性和物理性质变化进行追踪和预测的一项先进技术。

地震横波勘探

地震波 (弹性波 )的传播有纵波与横波两种,纵波质点位移的方向与波的传播方向平行,横波的质点位移方向与波的传播方向垂直。现在通用的地震勘探方法集的是纵波的讯号,集横波讯号的称做地震横波勘探。横波在判断岩性、裂缝和含油气性方面有其固有的优点。此种勘探方法在我国正处于研究和实验阶段。

重力勘探

各种岩石和矿物的密度 (质量 )是不同,根据万有引力定律,其引力也不相同。椐此研究出重力测量仪器,测量地面上各个部位的地球引力 (即重力 ),排除区域性引力 (重力场 )的影响,就可得出局部的重力差值,发现异常区,这一方法称做重力勘探。它就是利用岩石和矿物的密度与重力场值之间的内在联系来研究地下的地质构造。

磁力勘探

各种岩石和矿物的磁性是不同的,测定地面上各部位的磁力强弱以研究地下岩石矿物的分布和地质构造,称做磁力勘探。由于地球本身就是个大磁体,所以对磁力的预测值应进行校正,求出只与岩石矿物磁性有关的磁力异常。一般铁磁性矿物含量愈高,磁性愈强。在油气田区,由于烃类向地面渗漏而形成还原环境,可把岩石或土壤中的氧化铁还原成磁铁矿,用高精度的磁力仪可以测出这种磁异常,从而与其它勘探手段配合,发现油气田。 ?

电法勘探

电法勘探的实质是利用岩石和矿物 (包括其中的流体 )的电阻率不同,在地面测量地下不同深度地层介质电性差异,用以研究各层地质构造的方法,对高电阻率岩层如石灰岩等效果明显。电法勘探种类较多,我国目前石油电法勘探一般用直流电测深、大地电磁测深、可控源声频大地电磁测深等方法,近期又发展了差分标定电法、大地电场岩性探测法等新方法。

地球化学勘探

根据大多数油气藏的上方都存在着烃类扩散的 “ 蚀变晕 ” 的特点,用化学的方法寻找这类异常区,从而发现油气田,就是油气地球化学勘探。油气地球化学勘探方法的种类比较多,常用的是土壤烃气体测量、土壤硫酸盐法、稳定碳同位素法、汞和碘测量法等,还有地下水化学法及井下地球化学勘探法。

地球物理测井

地球物理测井简称测井,是在钻孔中使用测量电、声、热、放射性等物理性质的仪器,以辨别地下岩石和流体性质的方法,是勘探和开发油气田的重要手段。

油气评价总体思路及一般程序

夏云 田方 李保利

摘要 从扫描电镜、X射线衍射、阴极发光、电子探针及能谱、荧光、包裹体等分析技术的原理出发,系统介绍了储集层特殊分析技术在不同勘探技术领域中的应用,阐述了各项特殊分析技术组合应用在识别生油门限、建立高精度层序地层格架和储集层精细描述中的前景,例举了特殊分析技术在火成岩勘探和油层保护等勘探开发中的应用效果;同时,也指出了目前储集层特殊分析技术在油气勘探中的应用尚处初级阶段,有待于进一步的探索。

关键词 储集层 特殊分析技术 隐蔽油藏 勘探 综合评价

一、引言

仪器仪表工业的发展与计算机技术的广泛应用,使石油地质实验分析技术有了飞跃发展。为了适应油气勘探开发的需要,近年来世界上相继提出并发展了一系列新的储集层分析测试技术,主要在储集层地球化学、阴极发光、包裹体、图像处理、分形技术、成岩矿物同位素、成岩模拟实验等实验分析技术上取得了一些新的进展。我国石油地质储集层实验分析技术紧跟世界的先进水平,各种分析测试项目比较齐全,除显微红外光谱分析技术尚未开展外,其余先进技术在我国均有,有的还处于世界先进水平。胜利石油管理局地质科学研究院地层室近年来积极引进阴极发光、包裹体、图像分析及电子探针及能谱等先进分析技术,并将之应用于储集层油气勘探研究和油层保护研究,形成了一整套的储集层综合评价技术和油层保护技术,为油气勘探和开发提供了许多有价值的研究成果。

图1 储集层产验分析技术方法图

储集层实验分析技术包括三大部分:常规分析技术、特殊分析技术和配套或选择性分析技术(图1)。常规分析仅能满足区域勘探的要求,如果进行储集层精细描述和综合研究,必须开展特殊分析项目。

二、X射线衍射分析技术

X射线衍射的基本原理为通过确定晶间距来鉴定矿物的种类。对于细粒级的粘土矿物,以及变化很大甚至面目全非的矿物,X射线衍射是最重要的分析手段。X射线衍射分析技术在石油地质研究和油气勘探中的应用除粘土矿物的定性和定量分析外,还包括混层比计算、全岩X射线衍射和定量分析。

1.混层比计算

所谓混层比是指混层矿物I/S(伊利石/蒙脱石)或C/S(绿泥石/蒙脱石)中蒙脱石含量的百分比。由于有机质向烃类转化反应与生油岩中蒙脱石向伊利石转化中脱水反应有明显的对应关系,因此可利用泥岩粘土矿物成岩转化特征去推断有机质的热演化程度,并用于划分成岩阶段、估算地温、预测生储油层及判断生油门限值。

图2 低渗透储集层渗透率与蒙脱石含量关系图

2.全岩X射线衍射定性和定量分析

X射线衍射粘土分析技术除主要用来研究成岩作用,推断油气演化以外,还主要应用于油气勘探开发中的油气层保护研究。碎屑岩储集层中的粘土矿物是造成油层伤害的主要物质来源。粘土矿物对储集层造成的敏感性伤害包括水敏、速敏等五敏。经过对比研究,发现水敏伤害是造成低渗透储集层(渗透率小于50×10-3μm2)敏感性伤害的主要因素。水敏强度主要取决于油层中的膨胀性粘土矿物——蒙脱石的绝对含量(图2),而与储集层其他物性参数相关性不大。这一规律的发现有助于准确预测低渗透储集层潜在的敏感性,进而取有效保护措施,实现低渗透储集层的低伤害乃至无伤害勘探开发。

三、扫描电镜分析技术

扫描电子显微镜是利用具有一定能量的电子束轰击固体样品,使电子和样品相互作用,再借助特制的探测器进行收集、处理并成像,可以直观地认识样品的超微形貌、结构以及元素成分。扫描电镜下岩石矿物具有图形立体、分辨率高、景深大等特点,可以为储集层及其成岩作用的研究提供以下地质信息:颗粒大小、分选、磨圆、胶结物含量、孔隙分布及其含量;确定自生胶结物的类型、形态及其在孔隙中的分布方式;确定岩石孔隙类型、几何形态,并对储集性能进行判断;石英次生加大级别的判断;溶解交代作用的判断等。

扫描电镜能够直观定性地观察岩石的粒度和孔隙特征,但如何对所观察到的粒度和孔隙信息进行数值定量化却是一个急需解决的技术难题。笔者通过近几年的技术攻关,成功地开发出了储集层粒度参数和孔隙度参数定量化分析技术。其原理是利用计算机技术对扫描电镜图像进行二值化处理,求出颗粒和孔隙度参数值,进而绘制出孔隙度和粒度分布曲线。该技术成果在全国扫描电镜分析行业属首创,应用前景广阔。

四、阴极发光技术

阴极发光是阴极射线管发出的加速电子对样品进行轰击,使电能转化为光辐射而发光,即用阴极射线管发生加速电子进行激发而产生的一种荧光。其在石油地质及油气勘探中的应用有以下几种。

1.判断物源,确定母岩性质

各种石英的发光特征是在母岩形成的过程中形成的,代表其岩石形成的温度条件,而石英颗粒有三种类型的发光,即紫色、褐色和不发光,三种不同的发光类型反映了三种不同成因的石英。

通过对渤深4、临95、桩深1、央5等井的分析,可知胜利油区渤南、临南、潍北三个凹(洼)陷深层储集层中碎屑石英的发光普遍为棕褐色、浅褐色等,发褐色光的石英形成的温度条件有两种,一种为大于573℃,另一种为300~573℃,其母岩为高、中级变质岩,结合岩石学特征,推断三个凹(洼)陷碎屑岩母岩主要为太古宇老变质岩;其次在临82井、临45-11井中见零星石英颗粒发紫色光,其母岩为中生界喷出岩。

2.推断沉积环境,研究各种成岩作用,划分成岩作用序列和期次

(1)推断沉积环境变化

据研究,碳酸盐的发光强度和颜色受[Fe2+]/[Mn2+]比值控制。当[Fe2+]/[Mn2+]小于0.5时,呈现**;[Fe2+]/[Mn2+]比为0.5~1时,呈现橙色;[Fe2+]/[Mn2+]比为1~2时,呈现橙褐色;[Fe2+]/[Mn2+]比为2~10时,呈现褐—暗褐色;[Fe2+]/[Mn2+]大于10时,不发光。结合元素地球化学方面的研究,[Fe2+]/[Mn2+]比值是判断古环境的标志之一,不同的比值代表不同的古沉积环境。临82井3871.00m样品薄片中所见鲕粒,鲕心为一介屑,随着环境的变化,其鲕圈的成分和发光特征也发生变化,阴极发光的颜色及亮度均有不同,鲕圈从内向外颜色为亮黄—黄褐—褐红,亮度为亮—较暗—中等,从中得知鲕粒形成时其环境中的[Fe2+]/[Mn2+]比值变化为低—高—中等,比值的变化说明沉积环境中古盐度的变化为较高—渐低—中等。Fe2+为不易迁移元素,而Mn2+为易迁移元素,鲕粒颜色的变化又反应了沉积物离岸距离远—近—远的变化过程,也可能与沉积时湖水的进退有关。

(2)推断沉积后地层水盐度变化

根据渤南洼陷的碳酸盐岩成岩演化序列特征,早期方解石(褐黄)—晚期方解石(亮黄)—含铁方解石(黄褐)—白云石(玫瑰红)—铁白云石(不发光),反映了沉积—早成岩—晚成岩环境中古盐度由高到低的变化。

3.用于次生孔隙的识别

当碎屑岩存在粒间孔隙时,有时很难区分和确认是原生还是次生孔隙。例如方解石、白云石或其他矿物充填的孔隙,在成岩过程中,胶结物全部或大部分被溶解,形成的次生粒间孔与原生粒间孔在常规的显微镜下有时很难区分,而在阴极发光显微镜下,只要在颗粒边缘有一点方解石残余物,就可以发现。所以,在颗粒边缘如能看到残余的方解石、白云石、菱铁矿等胶结物,就可推断是次生孔隙。

岩样中石英碎屑边缘不规则或呈锯齿状,利用阴极发光可明显区分是交代溶蚀产生的还是局部加大引起的不规则外形。前者形成次生孔隙,后者为缩小了的原生孔隙。

4.对晶体成长环带及胶结物世代的研究

应用阴极发光显微镜可以解决碳酸盐胶结世代,研究其环带结构。

5.恢复原岩结构

岩石经过成岩作用的改造,就会发生一系列的变化,常常会改变岩来的结构。阴极发光显微镜在一定程度上可以再现原岩的结构。

6.对构造微裂缝的研究

研究岩石裂缝是储集层研究的重要组成部分,由于成岩作用的改造许多裂缝观察不清。通过阴极发光显微镜能够比较清楚地观察裂缝发育情况,包括裂缝的大小、宽度及充填情况等,特别对多组裂缝相互之间的交叉关系及形成顺序均可进行研究。

五、电子探针及能谱分析技术

电子探针是对物质表面形态和物质组分进行分析的大型精密仪器。在电子束的轰击下,不同的元素所产生的X射线的波长和能量不同。电子探针波谱仪和能谱仪通过测定矿物的化学成分组成而达到准确确定矿物种类的目的。电子探针分析区域细小,电子束斑可在1~100μm范围内任意选择,对微细矿物和脉的分析及对细小样品的成分分析是极为有效的鉴定手段。电子探针可以在光薄片上直接测定样品的组分。对薄片的微细矿物可进行点、线、面分析。能谱分析一般与扫描电镜观察配合进行,即通过检测元素的特征X射线的能量强度进行元素的定性和定量分析。能谱仪在所测量的同一点上,能同时检测该点的各种元素成分,并显示在荧光屏上,给出各种元素的谱图,含量愈多,谱峰愈高,反之亦然,该谱图非常直观。

电子探针波谱及能谱分析技术在石油地质中主要应用在以下几方面:与阴极发光显微镜相结合,可以揭示矿物的发光原理;与X射线衍射分析相结合,可准确鉴定各类粘土矿物的化学成分;还可准确鉴定沸石类矿物,以及对古生物、造岩矿物和自生矿物成分进行准确鉴定。

以沾化凹陷罗家地区罗151井3090.5m样品为例。样品岩性为中细粒辉绿岩,其中有一微区环带斜长石,对其做微区特定元素K、Na、Ca的面分析,测定结果见图3。从图3中可以直观地看出元素环带的分布形态,外层为正长石(钾元素面分布),中间层为含钙斜长石(钙、钠元素面分布)点,最里层为含铁硅铝的矿物,类似于绿泥石的元素组成,即长石从中心到边缘,钙离子逐渐减低,钠离子逐渐升高。一方面,表明长石的形成经过了漫长的时间;另一方面,表明岩浆开始结晶矿物时偏基性,而后逐渐向酸性过渡。同时说明岩浆冷却时间是很漫长的,其形成的晶体往往比较粗大。后期如有断层切割,地层水易对晶体进行溶蚀,形成裂缝-溶孔为主要储集空间的油气藏,如商河油田商741块火成岩油藏。

图3 罗151井3090.50m环状长石面分析元素分布形态图

六、荧光显微分析技术

荧光显微镜工作原理是利用紫外光作为光源,经物镜照射到薄片上,薄片样品中含有的有机质及沥青质就会被激发出荧光,根据样品的发光特点以及发光物质与岩石结构、构造的相互关系判断有机质的类型、成熟度、有效储集空间、油气运移等。荧光薄片分析技术在油气勘探中应用有以下几种。

1.评价生油层

荧光显微镜可为研究有机质的类型、形态、干酪根成熟度、有机质来源提供资料,从而对生油层进行评价。

2.研究石油的运移方向和运移时间

荧光镜下研究烃类的运移方向,主要是依靠发光强度(代表烃类含量)在纵向或横向的变化资料对比而取得的,只要确定了孔隙空间形成的时间,结合发光的范围就可以进行石油运移时间的研究。

3.判断储集层储集空间的有效性和含油性

以碳酸盐岩为例。确定碳酸盐岩储集空间的有效性的根据是:①裂缝是渗滤通道,而孔洞往往是储集空间;②缝洞周围基质含油与否与产油无关;③最晚形成的储集空间含沥青物质最有效;④当缝洞充填物中有第三世代充填物时,仅早期充填的第一、二时代充填物含油则无效。

碳酸盐岩的含油规律为:①次生有效裂缝,孔洞发光好坏与产油有密切关系,缝洞中含油则可产油,若不含油仅基质含油则不产油;②沿次生有效缝、洞含油,并向基质浸染愈宽,色晕愈多,颜色愈鲜亮愈好,预示能获得高产油流;③基质发光与否与产油无关,基质发光,缝、洞不发光不产油,基质不发光,缝洞发光仍能产油。

4.判断油水层界面

一般油层段岩样发光显示好,所有孔隙均含油,缝合线、晶间孔、粒间孔、晶体解理缝等浸染发光极好;油水附近井段发光显示不均匀现象,基质发光差,部分孔隙发光;而水层样品其缝及岩石均不发光。根据含油的纵向变化可以判断油水层界面。

5.荧光薄片分析技术在新疆和田探区油气勘探中的应用

(1)储集层荧光特征及含油性分析

由于和田探区露头含油样品经过长时间的风化、淋滤及油质受热蒸发,存于岩石孔洞缝中的轻质石油组分大部分被带走或挥发,荧光显微镜观察这些露头样品并判断是否为曾经含油的岩石,主要是寻找含油岩石残存的沥青踪迹,即孔洞缝中产生发光物质的颜色、亮度及是否具有彩色荧光等。据此推断,中石炭统卡拉乌依组石英砂岩、阿孜干组灰岩以及二叠系普司格组岩屑砂岩、克孜里奇曼组白云岩是石炭—二叠系有利的含油气储集岩。

(2)生油岩特征及成熟度判断

一般地,好的生油岩必须具备三个条件:①岩石中分布有大量的有机质残体,有机残体丰度越高,生油气的潜能就越大;②好的有机质质量,腐泥型干酪根比腐殖型干酪根生油气能力强;③生油岩的成熟度。另外,浅层未成熟样品中产生的荧光强度大,主要成油带由于部分烃类已被排除,发光强度减弱。干气带无荧光显示。

和田探区生油岩特征如下:①岩性为泥岩、砂质泥岩和灰质泥岩三类(不包括碳酸盐岩);②三种岩性都不同程度地含有有机质体,有机体呈两种状态存在,一种为顺层的丝状体,呈长条形,零星分布或集中呈层,主要分布于泥岩和砂质泥岩中,另一种有机体呈颗粒状,零星或分散于基质中;③根据有机质的残体判断,有机质含量一般4%~20%;④有机残体的发光颜色为暗橙褐色为主,少量为橙**,为胶质和沥青质沥青(表1)。

表1 和田探区生油岩特征表

根据以上分析可知,和田探区原始有机质残体丰度不理想,其荧光颜色表明有机质已达到高成熟,但残留的有机质为较重质沥青,有机质排烃充分,贡献较大。如果找到较厚的生油岩,虽然丰度不高,也可以有勘探远景。

七、包裹体分析技术

包裹体是成岩矿物生长过程中或生长以后,在矿物晶体内的缺陷、窝穴或次生显微裂缝中被包裹的固体、液体或气体。包裹体分析技术可应用于以下几个方面的油气勘探研究:①恢复古地温,重塑热历史;②研究成岩环境和成岩历史;③研究孔隙演化史;④确定油气运移的相对时间及方向;⑤研究油气田水的性质和来源,确定油气运移的条件。

深部油气层勘探是胜利油区当前油气勘探的热点,但同时也是一个难点。近几年,配合深层油气勘探,地层室的科研人员利用包裹体特殊分析技术在这方面进行了有益的探索和研究,取得了一些认识和成果。

1.确定石油破坏的深度,预测天然气勘探的有利深度

石油破坏的温度为118~121℃,潍北凹陷具此温度段的包裹体见于深度为3150m处,渤南地区见于3600m处,两个深度分别近似代表了两凹(洼)陷石油破坏的深度,在这两个深度以上是勘探石油的有利目标,此深度以下,石油逐渐裂解,生成轻质组分和甲烷等。因此,潍北凹陷3600m以下为深层天然气勘探的目标,这已得到勘探和包裹体成分的证实。潍北凹陷昌67井3157m样品包裹体中,甲烷摩尔数百分比为19.9%,央5井3701.08m样品两个包裹体中,甲烷摩尔数百分别为43.9%和57.6%,说明随深度的增加,石油破坏的程度越深,甲烷的含量也逐渐增加。

2.判断一定深度的油气勘探潜力

潍北凹陷央5井3900m以下没有油气显示,是没有找到好的有利相带还是没有生气潜力?从央5井4244m裂缝中气液包裹体可以说明,在此深度以下地层中含有大量的C1~C4的烃类,包裹体或气体总是从下往上运移的,从而证明井深4244m以下生油母质具有很高的生油能力,如果潍北凹陷深部能找到良好的储集岩层,那末此类储集砂岩可能会具有良好的油气储集能力。

3.推测盆地演化史

潍北凹陷央5井4244m包裹体所测古地温为168℃,实测井底温度为139℃,两者相差29℃。根据测算,潍北凹陷最小地温梯度为3.39℃/100m,最大地温梯度为3.7 C/100m,计算值与现今深度相比,其相对抬升高度或古剥蚀厚度为855m或765m。另外,央5井3701.08m不同时期方解石脉中,早期方解石包裹体与晚期方解石包裹体均一温度为164℃,晚期方解石包裹体均一温度为153℃,差值11℃。这也表明,在裂缝形成以后,潍北凹陷是整体逐渐抬升的,直到晚第三纪之后才逐渐下沉。

八、储集层特殊分析技术在火成岩油藏勘探中的应用

济阳坳陷侵入岩主要分布于商河和罗家地区沙三段,侵入于暗色泥岩、页岩和泥灰岩中。根据薄片观察,岩石结构为辉绿结构、辉长辉绿结构,X射线衍射分析主要成分为斜长石和辉石,次要成分为磁黄铁矿、黑云母矿物。由于岩体各部位热散失快慢不同以及结晶分异作用的影响,中心部位结晶粗大,长石含量也高。岩石中,CaO含量占8.7%~9.9%,Al2O3占 14.57%~15.7%,FeO+Fe2O3占 10.25%~11.79%,Na2O+K2O占3.86%~5.09%。可见岩石中Ca、Fe、Al的氧化物含量较高。根据ICP元素光谱分析,辉绿岩中阳离子Fe含量为6.91%~10.22%,Mg为2.43%±,Al为7.4%~7.30%,Na为2.77%±,K为4.34%±,Ca为5.61%~7.15%。侵入岩在侵位后,高温形成的矿物受到第三系水介质的影响,变得很不稳定,或纤闪石化或伊丁石化或粘土化、碳酸盐化等,最终变成在低温水介质条件下稳定的蚀变粘土矿物或碳酸盐。这些粘土矿物成分的种类从目前的化验分析资料看,基本上与第三系砂岩孔隙中粘土矿物相似,但是含量差异性比较大,构成了火成岩特殊的粘土矿物组合。经过薄片观察和X衍射分析蚀变粘土矿物为绿泥石、伊/蒙混层、伊利石和高岭石。粘土矿物总含量15%~24%,主要的粘土矿物为绿泥石和伊蒙间层矿物,绿泥石相对含量37%~47%,伊蒙混层25%~41%,其他伊利石0~23%,高岭石12%~15%,伊蒙混层比60%~70%。侵入岩体本身以裂缝孔隙为主,并且边缘相带和过渡相带裂缝比较发育,中心相带裂缝发育较差;原生裂缝即节理缝围岩为泥岩的比围岩为其他岩性(如泥灰岩)解理缝发育;断层活动带裂缝比远离裂缝的发育(如商743井裂缝比罗151井发育)。裂缝发育区则溶蚀孔隙较为发育,特别是断层附近的基质容易受带酸性的水介质影响,形成溶孔和溶洞等;另一方面,如果侵入岩体各相带裂缝发育程度相等时,中心相带溶孔最为发育。

侵入岩侵位时携带的大量热能,会在其周围形成接触变质带,矿物之间产生化学反应,低密度矿物化合成高密度矿物。经电子探针和X射线衍射分析,这种高密度矿物为石榴子石,石榴子石的形成必然使单位体积内的岩石固体体积缩小,有效孔隙增加,铸体薄片观察这种孔隙为石榴子石晶间孔隙,其岩石由沉积岩变成接触变质岩,如罗151、罗152、罗151-4井的接触变质岩,经物性测定孔隙度达25%~36%,其储集性相当于馆陶组砂岩储集层,单井产量15~90t/d。此类接触变质岩油藏的形成,研究认为需要两个基本条件:①必须有高能量的侵入岩;②岩浆必须侵入到灰质泥岩、泥质灰岩中,使其变质,产生有效孔隙。所以,今后对接触变质岩油藏的勘探,不仅要寻找火成岩,更主要的是寻找大范围、区域性的泥灰岩分布区(即泥灰岩分布区侵入辉绿岩时),就可能找到这种接触变质岩油藏。济阳坳陷接触变质岩油藏的发现填补了国内外发现类似油藏的空白,更为今后寻找这类特殊油气藏提供了依据。

九、探井砂岩储集层常规地质参数及敏感性预测技术

为了避免探井钻井过程中的油气层伤害,笔者研制开发了探井砂岩储集层常规地质参数及敏感性预测软件,实现了探井常规地质参数和敏感性参数的预测。本项预测的实现基于三方面的研究成果:①两年内建起了一个50MB的油层保护数据库,根据库内数据面的分布,把油区分成数十个区块,按区块求出了参数纵向变化规律和趋势;②通过相关性的研究,确定各种矿物组分可能引起的岩化作用和敏感性伤害指数及各种参数间数值大小的变化关系,建立模块;③编制了预测软件,预测方法是:首先根据待预测的探井井位坐标,确定待预测探井所属的软件编码区块(根据数据库参数回归确立的均质区块),通过以各区块回归方程为基础研制的软件,进行参数预测。预测的参数以岩性、物性为主,共有24项。根据预测的24项参数,还可对保护油气层有重要意义的敏感性参数及相关的临界值作出预测。

通过与8口探井取样后的实际分析数据进行对比发现,预测参数与实测参数基本吻合,精度达70%。探井储集层常规地质参数及敏感性预测工作自1998年10月开展以来,已完成90余口探井预测工作。这项工作节约了大量的实测所需费用,经济效益显著。

十、结束语

从上述分析可以看出,储集层特殊分析技术及储集层敏感性预测技术在油气田勘探开发中起着十分重要的作用,其应用前景十分广阔。但也应看到,由于阴极发光、电子探针及能谱、包裹体等分析技术的引进时间不长,尚处于技术开发初期和中期阶段,在油气勘探中的应用属于探索阶段,应用效果不够显著。这与技术开发时间较短有关,但也与储集层微观分析技术的局限性有关。只有储集层微观特殊分析技术与宏观分析技术的有机结合,才能取得显著的勘探成果和效益。

油气评价的实质就是科学地、定量地、系统地开展油气地质综合研究和勘探可行性、效益分析,因此应贯穿于油气勘探全过程。即不管是勘探程度很高的地区,还是勘探程度很低的地区,不管勘探对象是小(例如一个小断块圈闭)还是大(例如一个盆地乃至全球),其勘探工作中都必须把油气评价工作放在第一位,对勘探目标甚至井位进行分析和排队,优选目标和井位进行勘探,对于新区,是为了尽可能规避高风险目标,提高勘探成功率和效益,做到有目的地有地开辟新的勘探领域,建设和培育后备接替基地。对于老区,则是尽可能减少勘探开发工作量的浪费,降低成本,提高整体效益。

严格地讲,油气评价总体思路并非固定不变,不能简单划一,也不存在处处实用的一般工作程序。由于评价工作的组织者不同,评价的目的和要求就不同;由于评价工作实施者经验不同,风格不同,所取的思路、方法技术也就有所不同;当然,针对不同的对象,也应取不同的思路和程序。

概略来说,油气评价的组织者可分为三类,一是国际组织,二是国家(往往以行政主管部门负责,如我国原地质矿产部就组织了第一轮全国油气评价工作和多次较大规模的油气评价工作),三是石油公司及其下属单位。相应地,油气评价也就分出国际、国家和石油公司三个层面。

对于国际层面的油气评价,主要是通过有关会议(如国际地质大会、国际石油大会、AAPG年会等)组织有关专家进行全球油气评价与论证;也可由某一国际组织不定期地开展油气评价工作,如CCOP于1987~1991年开展的“东亚沉积盆地分析”项目,即组织中国等8个成员国对东亚陆地及近海地区主要沉积盆地的油气进行了评价;也可由某一非国际机构或有关专家开展油气评价工作,如美国地质调查局(USGS)2000年公布了其对全球油气评价的结果,前苏联专家古勃金(1937)对世界油气评价进行了粗略估算。总体上讲,国际层面的油气评价已由原来的成因法(以盆地或凹陷为单元)向总含油气系统法(以含油气系统为单元)深化,评价精度和结果可靠性有所提高,但不管什么方法,其评价的结果主要反映在当时认识程度下全球总量、分布规律及未探明油气潜力,为国际、地区和国家能源结构调整、能源政策的制定和充分利用国际提供依据和方向。

对于国家层面的油气评价,一般是由某一代表国家利益并行使油气管理权的机构组织人员实施。国外具有代表性的实例有:1960~1966年苏联组织约7000名专家对全苏联所有沉积矿产进行了评价,其中包括油气的系统评价;1962~12年美国组织100多名专家对全美国油气进行了系统评价。国内具有代表性的实例有:1982~1986年当时的地质矿产部组织数百名专家开展了“我国主要含油气盆地油气预测与评价”项目(即地质矿产部所谓的第一轮全国油气评价),1992~1994年当时的石油天然气总公司和海洋石油总公司组织24个单位数百名专家开展了第二次全国油气评价工作。国家层面的油气评价,其目的是准确掌握国家油气状况,特别是剩余油气分布及品质、勘探开发技术可行性,为制定国家能源政策,促进国家油气的有效管理和利用,促进国家工业布局优化和国民经济可持续发展,保障国家安全提供保证,为国家制定长远规划提供依据。

对于石油公司层面的油气评价,一般是由公司内部专门机构实施,也可聘请外部咨询机构和有关专家实施。总体上讲,石油公司是以盈利为目的,所以其油气评价一般规模不大,主要是针对自己拥有矿权的区块和意欲争取矿权的区块,从总量、分布状况、品质、技术经济可行性、效益等方面进行全面的系统的分析与评价,优选目标和方案。

由上述可知,国际层面和国家层面油气评价比较相近,均以弄清油气总量、分布规律、剩余非探明状况和勘探技术可行性为主要目的。而石油公司层面油气评价则不同,其主要的目的不仅是确定油气分布状况和勘探技术可行性,而且特别关注油气的品质、勘探开发成本及经济可行性、分析经济效益、优选方案等。相应地,油气评价的总体思路及工作程序也有所不同。

2.4.1 国家和国际层面油气评价总体思路及工作程序

国家和国际层面油气评价的范围广阔,对象复杂,又往往是大兵团作战,因此其总体思路应是:以盆地为基本评价单元,在先进的大地构造理论和油气地质理论指导下,开展区域地质背景研究和盆地类型划分与对比,编制相关基础图件,用统一的原则和方法进行评价和汇总。上述总体思路可用图2-1示意。其中的主导思想是:①“动态跟踪”,即每次油气评价,不管其方法多么先进,均不可完全准确地预测油气量和其分布,达不到一劳永逸的效果,更何况油气概念本身就是一个可随时变化的概念,人类对成藏模式、成藏条件的认识也是逐渐变化、逐渐逼近真理的,所以每隔一段时期,由于成盆、成烃、成藏理论的更新,各地区勘探开发程度和研究程度加深,新成果、新认识不断出现,故要求进行新一轮油气评价,以紧跟勘探开发形势和人类的认识水平。②“抓大放小”,在全国乃至全球的评价中,理论上所有盆地都应评价,但实际上办不到,也没有必要。勘探实践证明,少数富油大盆地的油气在全国乃至全球油气中所占比例很大。因此,评价中只要抓住这些富油的大盆地,适当兼顾中型盆地,就能基本上弄清全国乃至全球的总量和分布状况,而对占多数的小盆地没有必要进行评价,至少没有必要投入大量人力物力进行精细评价。③“求同存异”,就是要在评价中,建立统一的评价原则,选择统一的技术方法,确定统一的参数取值原则,以利于结果的进一步汇总和开展对析。对于盆地间成藏模式之差异性等,尽可能化小或忽略。

图2-1 国家和国际层面油气评价总体思路

在这个层面的油气评价中,通常的工作程序是:

(1)组建评价专家班子。

(2)讨论确定评价的目的、要求和结果的用途。如评价目的是预测中期(5~10年),还是长期(10年以上)油气勘探开发潜力;评价对象仅为常规油气,还是包括了非常规油气;评价范围是全球还是某一特定区域;要求的精度是高是低;结果是用于建立油气信息库,还是用于制定能源政策或能源发展规划。

(3)明确指导思想,制定实施。

(4)召开学术讨论会,组织相应技术培训班,规范术语,统一评价原则、评价方法及参数选取方法。

(5)资料收集整理,编制基础图表。

(6)开展盆地分析和含油气系统分析。

(7)选取参数,进行各盆地油气评价。

(8)进行质量控制,对各盆地评价过程和结果进行分析,改进参数选取方法,提高结果可靠性和可比性。

(9)汇总,并进行可靠性分析,进行与上次油气评价结果的对析。

2.4.2 石油公司层面油气评价总体思路及工作程序

石油公司层面油气评价的范围局限,目标明确,评价的目的多种多样。但总体看,评价的精度较高,结果的可靠性要求较高,而且评价中基本上都要进行经济可行性分析和决策分析。因此,其评价的总体思路是:以勘探层(Play,也称区带,下同)和勘探目标为基本评价单元,在含油气盆地和含油气系统分析基础上,应用先进成藏理论为指导,以先进的技术(甚至包括油藏描述、储层建模及可视化技术)为工具,对典型油气藏进行深入细致的解剖,建立成藏模式并进而建立评价模型,从含油气性(地质风险)和量、品质诸方面开展评价,进而开展勘探开发技术可行性分析和经济效益分析,进行决策分析,筛选有利目标和方案,提出勘探部署建议,该评价结果和建议经勘探实践检验,并将勘探结果等信息反馈给评价人员,以便及时对评价工作进行修正,改进评价模型,使评价结果逐渐逼近客观实际。此总体思路可由图2-2示意。其中的一些主导思想可以解释为:一是“具体问题具体分析”,即认为不同勘探层、勘探目标所处地质背景、演化史不同,其本身的地层和构造的特点不同,成藏条件和成藏模式、主控因素也不同,相应的评价侧重点、评价模型也应不同,因此要在解剖典型油气藏、总结成藏模式和成藏条件基础上建立具体的评价模型,以确保评价结果的可靠性和精度。二是“量力而行”,并非所有的油气现在都能拿出来,我们应从油气在地下所处条件、公司现有地震、钻井、固井、测井、测试、储层改造与保护、油、储运等技术两个方面分析油气勘探开发的技术可行性,筛选可行的勘探层和勘探目标以进行下一步评价。三是“斤斤计较”,即要从风险、勘探开发投入与产出、融资渠道、油气市场走向和价格波动趋势等诸多因素分析经济效益,筛选有利可图的勘探层、勘探目标及其相应的部署方案,尽可能使勘探开发规避风险,获得效益。

图2-2 石油公司层面油气评价总体思路

由于各石油公司在油气评价方面的概念、目的、思路、技术方法和指标等有所不同,故它们在评价的程序方面也千差万别,很难总结出其通用的工作程序。故而本书也不对此妄加总结。