1.四乙基铅的主要用途

2.二溴乙烷的用途?

3.当乙烯与含氯化钠的溴的水溶液反应,产物为什么没有1,2二溴乙烷

4.辛烷值是如何定义的

12二溴乙烷的制备_12二溴乙烷可做汽油

开拓石油化学加工

在有史以前,人们已经发现并利用石油了。考古学家们在现今伊拉克幼发拉底河两岸五千多年前的古建筑中发现有石油沥青砂浆的迹象。

”是古“燃”字。这就是说,我国早在1世纪以前已经发现洧水上有石油,可以燃烧。

但是,长期以来,石油只是直接作为燃料和照明用,会冒出浓厚的黑烟,还会产生强烈的刺鼻臭味。

到19世纪50年代,1855年美国耶鲁大学化学教授小西尼曼(Benjamin Silliman Jr。,1816-1855)研究分析了石油的组分,确定石油是多种烃的混合物。

烃音tīng,是碳(tàn)和氢(qīng)的切音,说明它是碳和氢的化合物。这是我国化学家们创造的具有中国特色的化学名词。

甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2)是三种最简单的烃,都是链烃,因为它们具有链状结构,以区别于具有环状结构的环烃。它们的命名同样具有中国特色。

甲、乙、丙、丁、戊、己、庚、辛、壬、癸称为天干,又称十干。天干和地支(子、丑、寅……)自古代起表示年、月、日和时的次序,周而复始,循环使用,我国的化学家们用来表示链烃中的碳原子数。“烷”表示“完整”,碳是4价的,1个碳原子与4个氢原子结合;“烯”表示“稀少”,“炔”表示“缺乏”。三者都用“火”旁,表示它们都能燃烧。

链烃又可分为直链链烃和带支链链烃。例如正庚烷表示含有7个碳原子的烷烃,它是直链的链烃,分子结构是:

异辛烷是辛烷的同分异构体,表示含有8个碳原子的烷烃,它们的分子式都是C8H18,但结构式不同。异辛烷是带有支链的链烃,又称2,2,4—三甲基戊烷,表示它是含有5个碳原子的烷烃,同时这5个碳原子从左向右数分别编号为1、2、3、4、5,在2、2、4位置上连接着含有1个碳原子和3个氢原子的三个甲基(—CH3)。

苯(C6H6)、甲苯(C6H5CH3)等分子结构中碳原子连接成环,所以又称环烃:

有机化合物就是按分子结构分为链状化合物和环状化合物两大类,链状化合物也叫做脂肪族化合物。环状化合物可分为三类:第一类是芳香族化合物(27),第二类是杂环化合物(27),第三类是脂环族化合物。例如环己烷(C6H12),它的分子结构中没有双键或三键,是饱和的化合物。因此环烃又有芳(香)环烃和脂(肪)环烃的区分。

烃又可分为饱和烃和不饱和烃两大类。烷烃就是饱和烃,它们的通式是CnH2n+2,烯烃和炔烃都是不饱和烃,它们的通式分别是CnH2n和CnHn。

石油是多种烃的混合物,就是说石油既含有链烃,也含有环烃;既含有直链链烃,也含有带支链链烃;既含有脂环烃,也含有芳环烃;既含有饱和烃,也含有不饱和烃。

1859年美国人德拉克(Edwin L.Drake)首先在美国宾夕法尼亚(Pennsylvania)州蒂图斯维尔(Titusville)钻井油,并将得的石油进行分馏。他将馏出温度在40~60℃、其中含有5~6个碳原子烃的馏分称为石脑油,用作溶剂;馏出温度在55~200℃、其中含有6~12个碳原子烃的馏分称为汽油,没有得到应用;馏出温度在195~300℃、其中含有12~16个碳原子烃的馏分称为煤油,供照明用;馏出温度在285~350℃、其中含15~18个碳原子烃的馏分称为柴油,作为发动机的燃料;馏出温度在350℃以上、其中含有18个以上碳原子的馏分称为重油,用作润滑剂;残渣沥青用作涂敷屋顶防水。

南京大学化学系。有机化学(上册)。北京:人民教育出版社,18。

利用石油的馏分供点燃照明用,仍会产生强烈刺鼻臭味,这是由于石油中含有的硫在燃烧中产生二氧化硫(SO2)气体。大约在1887年,美国标准石油公司(Standard oil Co。)化学师弗拉施(Herman Frasch,1851-1914)利用铜、铅、铁等金属氧化物使石油的硫变成硫化物沉淀,回收后重新转变成氧化物。后来他又利用浓硫酸作氧化剂,使石油含有的一些具有臭味的硫化物氧化成磺酸(R-SO3H),形成酸渣,用离心分离法或静置法分离出去。这可以认为是石油化学加工的第一回合。

可是,一直到19世纪末,汽油都没有得到充分利用,原因是它的着火点低,又容易挥发,不仅是一遇火就着,而且是烧成一片,甚至发生爆炸,被人们看作是危险的“废料”,不知如何处理。

到19世纪末,内燃机和汽车相继问世。与内燃机相比,蒸汽机是烧开锅炉里的水,产生蒸汽,再把蒸汽引进汽缸里,推动活塞工作,所以可以叫做“外燃机”。而内燃机是将燃料放在汽缸内燃烧,使燃烧产生的气体推动活塞工作。内燃机需要容易燃烧的液体燃料,汽油正好符合要求,当内燃机装进汽车后,汽油的身价随即上涨。

但问题又出现了,汽油的蒸气与空气的混合物在汽缸中燃烧时,一部分汽油往往在发火前就发生爆炸性的燃烧,从而出现爆震现象。爆震不仅造成能量的浪费,更使内燃机的汽缸受到损害。经过各种试验,明确爆震程度的大小与所用汽油的成分有关。一般说来,直链烷烃在燃烧时所产生的爆震程度最大,烯烃和脂环烃较次,芳香烃和带有很多支链的烷烃所产生的爆震程度最小。在含有7~8个碳原子的汽油成分中,以正庚烷的爆震程度最大,而异辛烷(2,2,4—三甲基戊烷)则基本上不产生爆震。

汽油的辛烷值是衡量汽油爆震程度的尺度。辛烷值是以正庚烷和异辛烷作为标准,规定正庚烷的辛烷值为0,异辛烷的辛烷值为100。在正庚烷和异辛烷的混合物中,含异辛烷的体积分数叫做这种混合物的辛烷值,也就是通常所说的汽油牌号。

各种汽油的辛烷值或汽油牌号,是把它们在燃烧时发生爆震现象的程度与上述混合物比较得到的,例如某汽油的辛烷值是80,或80号汽油,就是说这种汽油在一种标准的单汽缸内燃机中燃烧时所产生的爆震现象,与由20%(体积分数)正庚烷和80%异辛烷的混合物在同一汽缸中燃烧时所产生的爆震程度相同。普通汽油并不是正庚烷和异辛烷的简单混合物,所以辛烷值只能表示它的爆震程度的大小,并不表示异辛烷在其中的含量。

石油分馏所得汽油随原油不同,辛烷值大约在20~70之间,不能满足汽车、飞机燃料的要求。

第一次世界大战后不久,美国通用汽油公司的实验室里进行着许多物质的筛选研究,试图找到一种物质,把它添加到汽油里,降低汽油燃烧的爆震程度。美国工业化学家米奇利(Thomas Midgley,1889-1944)和波伊德(T.A.Boyd)找到四乙基铅(Pb(C2H5)4),于1921年投入使用,能降低汽油燃烧时的爆震,称为抗爆剂。但后来发现四乙基铅在汽缸里燃烧后会生成氧化铅,堆集在汽缸里,造成障碍。于是又添加二溴乙烷((CH2)2Br2)和二氯乙烷((CH2)2Cl2),它们在燃烧时能与四乙基铅发生化学反应,把生成的物质一起排出。

在排出的气体中含有溴化铅(PbBr2),它在日光照射下会分解,产生铅和溴,污染空气和环境,这使创造使用四乙基铅的人员陷入困惑。美国从1995年起已禁用含铅汽油。我国北京市从1998年1月起也禁止使用含铅汽油,随后全国禁用。

汽油中添加抗爆剂可以认为是石油化学加工的第二个回合。

第三个回合就是石油的裂化和裂解。

石油的裂化和裂解都是利用加热使石油中含碳原子较多的烃,如柴油或汽油以上的其他高沸点馏分,分解成含碳原子较少的烃。这些含碳原子较多的分子在受热过程中,不但碳链发生断裂,产生含碳原子较少的分子,同时还有脱氢、聚合、环化、异构化等反应发生,使产物中含有相当量的烯烃、芳烃和带有支链的烷烃。这些成分都具有较高的辛烷值,因此石油的加热分解不仅增加了汽油的产量,而且得到质量较好的汽油,这是应需求而产生的。一般从石油分馏得到的汽油叫做直馏汽油。直馏汽油无论在质量和数量方面来说,都不能满足现代工业发展的要求,因为直馏汽油产率仅相当于原油质量的16%,其辛烷值一般在20~70之间。裂化石油产品不但能从同质量的原油中增产三倍以上的汽油,同时能增强抗爆震性能,所以从20世纪初期起,石油产品的裂化加工就飞速发展起来。

石油的裂解和裂化的区别在于反应温度。裂化温度一般不超过500℃,得到的烃主要是液态的,也有一些气体产生;裂解温度一般在700℃以上,到1000℃或更高,得到大量气体产物,附带也有一些液体产物。

这是多位科学技术人员开拓发展起来的。

美国化学家伯顿(William Meriam Burton,1865-1954)从1909年开始研究石油裂解,最初是在气相和大气压下进行,产量很低,曾试用氯化铝等催化剂,效果也差,两年后研究在液相、350~450℃和5个大气压下进行,从原油中分馏出的汽油高达60%,1913年首先用“石油的裂化方法”取得专利。1915年汽油价格下跌,该方法为美国在第一次世界大战期间汽油的供应作出贡献,1921年获美国化学工业协会帕金奖章。

Charies G.Moseley。,Chemistry and the first great gasoline shortage.Journal of chemical education,1986,57(4)。

1915年俄罗斯化学家泽林斯基(Hикoлaй митpиeвич Зeлинcкий,1861-1953)提出利用三氯化铅作为石油裂化的催化剂。

1927年美籍法国机械工程师霍德里(Eugene Houdry,1892-1962)利用氧化硅—氧化铅作催化剂裂解石油。他发现在裂解过程中产生的炭粒覆盖在催化剂表面,降低了催化剂的活性,于是他将空气导入反应器中,使炭粒燃烧,既清除了炭粒,又成为反应过程所需的热源。

Charies G.Moseley.Engene houdry,catalytic craching,and world warⅡ iation gasoline,Journal of chemical education,,61(8)。

1931年美籍俄罗斯化学家伊帕季耶夫首先使用高温催化裂化石油。

随着石油裂化和裂解的发展,又出现重整、烷基化等石油加工工艺。

重整即重新整理的意思,是将直链烃类重新整理,使之成为带支链的烃和环烃,需要用铂或铼等催化剂,又名铂重整,以提高产品的辛烷值。

烷基化是将烷基加到烃分子上以提高辛烷值。

四乙基铅的主要用途

二溴乙烷化学式:C?H?Br?。

二溴乙烷,是一种有机化合物,主要用作溶剂,也可用于有机合成。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,二溴乙烷在2A类致癌物清单中。

狭义上的有机化合物主要是指由碳元素、氢元素组成,一定是含碳的化合物,但是不包括碳的氧化物和硫化物、碳酸、碳酸盐、氰化物、硫氰化物、氰酸盐、碳化物、碳硼烷、羰基金属、不含M-C键的金属有机配体配合物,部分金属有机化合物等主要在无机化学中研究的含碳物质。

有机物是生命产生的物质基础,所有的生命体都含有机化合物,如脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。

此外,许多与人类生活有密切相关的物质,如石油、天然气、棉花、染料、化纤、塑料、有机玻璃、天然和合成药物等,均与有机化合物有着密切联系。

有机物的主要特点是:

1、大多为共价型化合物,固态是分子晶体,有较低的熔点(一般在300℃以下) 、沸点,极性较小,属于非电解质。

2、大多易燃,受热易分解。

3、多数难溶于水,易溶于乙醇、、丙酮、苯、汽油等有机溶剂。

4、有机物的反应多为分子反应,反应速度较慢,常需要加热、光照或催化剂。

5、有机反应的副反应多,产率较低,产物往往是混合物。

6、普遍存在同分异构现象。

二溴乙烷的用途?

四乙基铅一度广泛使用作为添加剂在汽油,以提高燃料的辛烷值,以防止发动机内发生爆震,从而能够使用更高的压缩比率,藉以提高汽车发动机效率和功率。最初使用四乙基铅添加剂的美国,与最初使用酒精作添加剂的欧洲比较。含铅汽油的优点从它的高能量含量和贮藏品质较高表现出来,最终成为了普遍使用的燃料添加剂。其中一个最大的优点,四乙基铅比其他抗爆震剂或使用高辛烷值的汽油混合剂比例比较,仅需要非常低的浓度,就达到提高燃料的辛烷值。典型的制备方法,是以一份的乙基液(内含四乙基铅)加到1260份未经处理的汽油。其他抗爆震剂必须在用较大量的份量和/或比天然汽油的能源值更低。高能源值的含铅汽油会有更大的燃油效率。

当酒精用来作为抗爆剂,会造成燃料吸收水分和空气,高湿度燃油可导致燃料喉管生锈和腐蚀。而四乙基铅是较易溶于汽油,而乙醇则难溶于汽油,且溶解度随燃料湿度增加。随着时间的推移,水滴和积水的水分可以形成在燃油系统的燃料喉管结冰。此外燃料的高湿度也可以出现生物污染问题,由于某些细菌能够在水面和汽油的表面繁殖,从而在燃料系统内造成细菌滋生。四乙基铅的毒性,使其具杀菌特性,有助防止燃油污染和细菌生长而造成燃油降解。此化合物常用于汽车汽油的添加剂,提高辛烷值,作为抗震爆之用,从而延长各零件的寿命。其燃烧会产生固体一氧化铅和铅。固体铅金属与氧化铅会在发动机内迅速积聚,损害发动机内各个零件。

因此会加入1,2-二溴乙烷或1,2-二氯乙烷,令铅反应为可蒸发的溴化铅和氯化铅,但这些物质会造成空气污染,对儿童脑部构成损害,因此油公司开始推出无铅汽油。此外,这种添加剂也会造成催化转换器内的催化剂受污染,催化剂失效会使汽车的催化转换器失去其功能。

当乙烯与含氯化钠的溴的水溶液反应,产物为什么没有1,2二溴乙烷

二溴乙烷一不可燃,可能致癌性之极毒性液体,重要特性如下:

1.物理属性

颜色 无色

性状 液体

气味 略具甜味

沸点 131℃

比重 2.18 2.2(NISOH)

蒸气压 11mmHg ,在20℃时 1.5 mmHg(20℃)(NISOH)

蒸气密度 6.5

水中溶解度 2.4%,在20℃时 1 g/100ml(20℃)(NISOH)

2.化学属性

腐蚀性 二溴乙烷会腐蚀某些脂肪、塑料、橡胶及外膜,高温下产生毒性与腐蚀性熏烟。(NISOH)

危害性聚合 不会发生

感旋光性 无

反应性与

不兼容性 (1)与钠、钾、铝粉、锌、镁等活性金属,起剧烈反应。

(2)与强碱液氨或强氧化剂接触,可能爆炸。(NISOH)

分解性 在强热下,会产生有毒的溴化氢及溴乙烯。

3.灾害资料

闪火点 不可燃

自燃温度 -

可燃范围 -

4.健康危害资料

容许浓度 20 ppm

动物半致死剂量(LD50) 108 mg/kg (大鼠、吞食)

动物半致死浓度(LC50) 14300 mg/m3/30min(大鼠、吸入)

1831 ppm/0.5H(大鼠、吸入)(ERG2000)

立即危害浓度(IDLH) 100 ppm

致癌性分类 2A -疑似人体致癌性

辛烷值是如何定义的

是因为乙烯与溴的反应不是一步完成的。

当溴分子接近双键时,由于π电子的排斥,使非极性的溴溴键发生极化,离π键近的溴原子带部分正电荷,另一溴原子带部分负电荷。带部分正电荷的溴原子对双键的亲电进攻,生成一个环状的溴鎓正离子。 然后么,溴或者氯阴离子进攻溴鎓离子,得到1,2-二溴乙烷。

1,2-二溴乙烷,无色液体,有挥发性,有毒。微溶于水,溶于乙醇、、氯仿、丙酮等有机溶剂。性质稳定,常与四乙基铅同时加在汽油中,可使燃烧后产生的氧化铅变为具有挥发性的溴化铅,从内燃机中排出。用作脂肪、油、树脂等的溶剂,谷物和水果等的杀菌剂、木材的杀虫剂等。可由乙烯与溴加成制得。

辛烷值详解

爆震(震爆Knocking)

汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波之波形发生突变,如引起燃烧室其它地 方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而 产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。

爆震之原因:

(1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。 (5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。

减少爆震方法:

(1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度.(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。(8)保持冷却系作用良好。

辛烷值

爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷 CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。

当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混 合物之震爆性相当。

此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅 汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。

例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。

汽油亦可藉再加入其它添加物而提升辛烷值。如普通汽油辛烷值不高(约为50),若 再加入四乙基铅(C2H5)4Pb时,其辛烷值提高至75左右,此为含铅汽油之来源,为除去铅在引擎内之沈积,再加入二溴乙烷,使产生PbBr2之微粒排放出来,但造成环境之污染。一般无铅汽油不含四乙基铅,改用甲基第三丁基醚,甲醇,乙醇,第三丁醇等添加物。

某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。

一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。

辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。

若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比 9.2至9.8使用95无铅汽油;压缩比9.8以上或者涡轮增压引擎车种才需要使用98无铅汽油。

品名 辛烷值 品名 辛烷值

正壬烷 -45 异辛烷 100

正辛烷 -17 甲苯 103.5

正庚烷 0 甲醇 107

正戊烷 62.5 乙醇 108

2-戊烯 80 苯 115

1-丁烯 甲基第三丁基醚 116

乙基苯 98.9

辛烷值愈高,代表抑制引擎震爆能力愈强,但要配合汽引擎之压缩比使用。

压缩比

压缩比(CR)定义为活塞位移容积(PDV)与燃烧室容积(CCV)之和与燃烧室容积(CCV)之 比等于汽缸总容积(PDV+CCV)和燃烧室容积(CCV)之比。

辛烷值是决定汽油引擎能否发挥其设计性能的重要指标,而引擎设计变数中的压缩比是决定辛烷值是否符合其需求的重要参数。当引擎在压缩行程中,油气体积变小,其压缩比率越大,压力越大,温度越高,此时所选用之汽油,必须在此条件下,仍不会引发自燃,如果火星塞尚未点火之前,油气产生自燃现象,则在动力行程中会产生火焰波互相冲击,造成引擎爆震,汽油对此爆震程度之量测指标称为辛烷值。

辛烷值越高抗爆震程度越高,由于引擎设计不断精进,汽车制造厂以提高引擎压缩比来缩小引擎体积,增加单位体积所能产生之马力。目前最普通的压缩比在九至十一。压缩比愈高,理论上引擎效率愈高,燃烧愈干净,不过高压缩之汽车也会产生震爆 问题,且高压缩比汽车在高燃烧效率下,在废气成分 中,一氧化碳含量较少,但其它氮氧化物比例反较低压缩引擎稍高。

辛烷值愈高之汽油将可使高压缩比,高性能之车种,展现引擎原设计之高马力,高扭力性能,同时可以发挥省油之效果。亦即高压缩比之引擎需要高辛烷值之汽油,以耐更高的压力与温度,以避免影响汽车之驾驶性能及爆震损害引擎,且可降低排气中之一氧化碳含量。若高压缩比引擎使用过低之辛烷值汽油,行车时容易产生爆震现象(不正常燃烧,引擎有噪音),且易造成引擎爆震无力,引擎过热,加速磨损,长期会损害引擎,且耗油。但提高辛烷值必须提高汽油内芳香烃之比率,若低压缩比引擎使用过高之辛烷值时,会使燃烧温度过高,引擎过热,烧壤排汽门,不会增加马力,不会省油,会发生燃烧不完全,增加废气中之芳香烃类排于空气中,反而增加空气中之致癌物,所以不鼓励使用。选用汽油应依照原厂建议,车辆选用之汽油辛烷值只能比原厂建议值高,不能低,适合最好。

高级汽油含铅,铅对引擎排气阀有润滑作用,故原使用高级汽油之车辆改用无铅汽油时,首先必须确认引擎排气阀座是否经过硬化处理,若尚未经过硬化处理,则可取以下任一方式解决:(1)应进行排气阀座硬化处理。(2)在无铅汽油中加入适当抗排气阀座磨损凹陷之添加剂。(3)原使用高级汽油之车辆,排气阀座上已有一层润滑薄膜,故改用无铅汽油后尚可维持一万公里左右,不会明显凹陷。

汽油品质规范中之蒸气压直接影响汽油之启动性能,蒸气压代表汽油挥发能力之尺度。汽油挥发性强,容易点爆启动,但太强,会损耗增加,且污染空气,甚至在油管内形成气障,阻碍汽油流动,造成熄火。在冬天时汽油蒸气压大,则引擎冷时较容易启动,但引擎已热,停火后,再度启动时,此种蒸气压大之汽油易使引擎汽缸吸入过浓油气,反而难以启引擎。在夏天时,温度高,冷车时启动较容易,但热车时启动较困难,因汽油容易过浓而引起气障而熄火,故夏天(4月1日至10月31日 )必须供应具较低蒸气压之汽油(62KPa=62000帕,1帕=1牛顿/米2),冬天(11月1日至翌年3月31日)必须供应具较高蒸气压之汽油(69KPa)。衡量油品挥发程度的指标称为雷氏蒸汽压(RVP),该指数愈高,代表挥发性愈强。目前我国环保署订定的汽油雷氏蒸汽压上限为9PSI(pounds per square inch 磅/平方吋 约63KPa)。98无铅汽油雷氏蒸汽压为6PSI(约42KPa),过低会发生冷车启动困难,中油已提高至7PSI(约49KPa),只要增加轻质油料掺配量即可改善。

良好之汽油品质必须(1)抗震爆性能良好。(2)启动性质良好。(3)暖车迅速。(4)加速能力强。(5)耗油量少。(6)引擎运转平稳。(7)防止气障。(8)抗腐蚀性良好。(9)不易变质或生胶。